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This paper is concerned with differential equations of the form
d*w/dz? = {u¥f(u, 2) +8(u, 2)} 0,

in which u is a positive parameter and z is a complex variable ranging over a simply
connected open domain D that is not necessarily one-sheeted, and may be bounded or
unbounded.

In the first part we assume that for each value of 4 the function (z—¢)*™f(u, z) is
holomorphic and non-vanishing throughout D, where ¢ is an interior point of D and m
is a positive constant. Itis also assumed that g(«, z) is holomorphic in D, punctured at ¢,

1 Present address: Institute for Physical Science and Technology, University of Maryland, College Park,
Maryland 20742, U.S.A.
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502 F. W.]J. OLVER

and g(u,z) = O{(z—¢)7~'} as z—>¢, where v is another positive constant. Thus ¢ is a
fractional transition point of the differential equation of multiplicity (or order) m— 2,
and there are no other transition points in D. Uniform asymptotic approximations for
the solutions, when u is large, are constructed in terms of Bessel functions of order 1/m,
complete with error bounds.

In the second part the Bessel function approximants are replaced by their uniform
asymptotic approximations for large argument, yielding the connection formulae for
the Liouville-Green (or J.W.K.B.) approximations to the solutions, again complete
with error bounds. These results are then applied to solve the general problem of
connecting the Liouville-Green approximations when D contains any (finite) number
of transition points of arbitrary multiplicities, integral or fractional.

The third, and concluding, part illustrates the theory by means of three examples.

An appendix describes a numerical method for the automatic computation and
plotting of the boundary curves of the Liouville-Green approximations, defined by

Re f “rhu, ) de = o,

where ¢ again denotes a transition point.

1. INTRODUGTION AND SUMMARY
1.1. Introduction

The problem of constructing asymptotic solutions of differential cquations of the form
d2w/dx?® = {u?f(u, x) +g(u,x)}w (1.1)

for large values of the positive real parameter « has been studied by many physicists and mathe-
maticians, including the present writer. In Olver (19774) I considered the case in which the
independent variable ¥ ranges over a finite or infinite open interval, within which f(u, x) and g(x, x)
are free from singularity and f(u, ¥) has a single zero of arbitrary multiplicity. Zeros of f(u, ) are
called turning points or transition points of (1.1), and in Olver (19775) I considered the necessary
modifications when the interval of integration is permitted to contain any (finite) number of
turning points of arbitrary multiplicities. The object in these two papers was to connect the Liou-
ville-Green approximationst that represent the solutions in the neighbourhood of an end-point
of the interval of integration with the corresponding approximations valid near the other end-
point.

The present paper develops a similar theory when the independent variable, which we now
denote by z, ranges over a bounded or unbounded domain D in the complex plane. This extension
has a variety of promising physical applications, including scattering and optical potential prob-
lems in quantum mechanics (Pokrovskii & Khalatnikov 1961; Mott & Massey 1965; Brander
1966; Berry & Mount 19%2; Child 1974; Connor, Jakubetz & Sukumar 1976; Knoll & Schaeffer
1976), transmission of radio waves (Budden & Smith 1974), trapping of water waves (Lozano &
Meyer 1976), and hydrodynamic instability (Drazin 1974).

A new feature in the complex case is that the functions f(u, z) and g(u,z) in the differential

equation d2w/dz? = {u*f(u, z) +g(u, z)} w (1.2)

are required to be analytic functions of the complex variable z. Another important difference is
that the Liouville-Green (L.G.) approximations are valid only in restricted regionsof D. Suppose,

+ Also known as J.W.K.B. approximations.
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LIOUVILLE-GREEN APPROXIMATIONS 503

for example, that D contains a single turning point ¢ of multiplicity m — 2, where m is an integer
not less than 2. Then we first construct the curves

Re f "0 dt = 0,
c

called the principal curves (or anti-Stokes lines) associated with ¢. It is easily verified that m such curves
emerge from ¢, dividing D into m regions, which we call the principal regionst associated with c. Each
L.G. approximation for a given solution of (1.2) is valid in at most three adjoining principal
regions, and then only after deletion of a domain that contains the boundary of their union.

Hitherto, methods used for connecting L.G. approximations in the complex plane have
depended on the construction of transition (or transmission) matrices that relate pairs of solutions in
two adjoining principal regions. To pass through several regions we form the product of the corre-
sponding transition matrices. In Olver (1977a) methods of this type were classified as lateral or
pseudo-lateral, depending on the way in which the transition matrices are derived. The earliest
investigation of transition matrices for turning points of arbitrary multiplicity appears to be the
formal analysis of Heading (1962, pp. 89-93, and 110-115). Leung (1975) supplied a rigorous
proof, based on a uniform reduction theorem due to Sibuya (19%4), for the case in which f(u, z)
is a polynomial in z that is independent of u, g(, z) = 0 and D contains a single multiple turning
point. More recently, Leung (1977) has applied his results to solve an eigenvalue problem involv-
ing several turning points. Further historical details may be found in Olver (19774, §6) and Olver
(19776, §6) and will not be repeated here.

In the present paper it is shown how to continue a solution that is recessive in any given prin-
cipal region directly to any other principal region associated with the same turning point, without
the need for passage through each of the intervening regions. The method is of central connection
type, as defined by Wasow (1968) and Olver (1977 4). The procedure has the obvious advantage
of reducing substantially the number of steps needed in the connection process. When D contains
n turning points, at most z steps are needed to trace any solution, whatever the multiplicities of the
turning points. In practice, the number of steps is often very much less than z. Also, in contrast
to the procedures of Heading and Leung, there are no restrictions on the configuration of the
turning points.}

The present theory differs from earlier investigations in two other respects. First, explicit and
realistic error bounds are found for the approximate coeflicients in the connection formulae in a
form that is suitable for a single transition point or several transition points. In the real-variable
theory of Olver (19774, b) error bounds were constructed only for the case of a single transition
point. The present extension to several transition points was stimulated by the work of Taylor
(1978).

Secondly, the theory admits fractional transition points, that is, points ¢ at which f(u, z) /(z—¢)™2
is analytic, m now denoting any positive constant. In general, such points are branch-points of the
solutions of the differential equation. The analysis in these cases is more difficult, but apart from
the need to introduce Riemann sheets the final connection formulae are essentially the same. This
extension covers the commonly occurring case in which f(«, z) has a simple pole at ¢; in this event
m = 1.

+ Other names are Stokes regions (Wasow 1968) and principal subdomains (Olver 1965).
"1 Added in proof, 8 May 1978. Restrictions on the number and configuration of the turning points have
also been removed in a recent paper by Heading (1977). The object in this reference is to develop a method
that can be applied easily, and it is achieved by use of pseudo-lateral connection with formal analysis.

45-2
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1.2. Summary

The paper is divided into three parts, the contents of which are as follows.

In part A, comprising §§2-4, the given complex domain D is assumed to contain a single
transition point of any multiplicity, integral or fractional. In §2 we collect relevant properties
of standard solutions of the basic comparison equation

d2w/de? = tm*m—2uw, (1.3)
especially connection formulae and uniform asymptotic approximations for large |¢|. We also
introduce auxiliary weight, modulus and phase functions. In §3 we state and prove the main
approximation theorem for solutions of (1.2). This theorem furnishes approximations for large
values of the parameter « in terms of solutions of (1.3). Except for the usual possible shadow
zones (see, for example, Cherry 1950; Olver 1974, pp. 223 and 417) these approximations are
uniformly valid in the whole of D, even when D is unbounded or has irregular singularities of
(1.2) on its boundary. This problem is of considerable importance in its own right, quite apart
from the connection formula problem. It has been considered previously by Langer (1932, 1935)
and Olver (1977¢), but the asymptotic solutions constructed in these references are not the ones
that are pertinent to the present investigation, and new proofs are needed, especially when m is
not an integer. The approximations found in § 3 are accompanied by inequalities satisfied by the
error terms, and are valid when the coefficients f(«, z) and g(u, z) in (1.2) depend on the para-
meter % in a fairly general manner. For the approximations to be meaningful, however, the error
terms must vanish as #— 00, and in §4 we derive asymptotic estimates of the error bounds in the
common case in which f(u, z) and g(, z) are independent of .

In part B, comprising §§ 5-7, the uniform approximations of § 3 are re-approximated away from
the transition point by replacing the basic functions, that is, the standard solutions of (1.3), by
their asymptotic approximations for large argument. This yields the L.G. approximations in
each principal region. The main connection theorem, giving the L.G. approximations complete
with inequalities satisfied by the error terms, is stated and proved in § 5. In § 6 we derive asymptotic
estimates of the error bounds in the case when f(u, z) and g(u, z) are independent of « by appli-
cation of the results of §4. Applications of the theorems of §§ 5 and 6 are discussed in §7. To solve
the general problem in which there are any number of transition points, it suffices to consider a
domain D containing two transition points of arbitrary multiplicities. Two distinct cases arise,
depending whether or not these points are joined by a common principal curve.

Part C, comprising §§ 8-10, illustrates the theory by means of three examples. The first (§8) is
an eigenvalue problem involving four real turning points of multiplicities 2, 1, 4 and 3. This
example was solved previously in Olver (19475, §5) and therefore serves as a check on the present
analysis. The second example (§9) has three triple turning points, distributed equidistantly
around the unit circle. The final example (§10) involves four singularities. Two of these are
located on the real axis and are simple poles of f(u, z); thus m = 1 for each. The other two are
branch-points of f(«, z) situated on the imaginary axis, and m = 3 for each.

An appendix outlines the numerical method that was used for the automatic computation and
plotting of the principal curves for the examples described in part C.

For the reader who is concerned only with applying the connection formulac in the case when
the functions f (u, z) and g(u, z) are independent of #, and not with the proofs of the theorems or the
evaluation of error bounds, the relevant parts of this paper are §§5.1, 6.1, 6.2, 6.4, 7.1-7.4, the
examples treated in §§8-10, and the appendix.
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LIOUVILLE-GREEN APPROXIMATIONS 505

PART A. UNIFORM APPROXIMATIONS FOR THE SOLUTIONS
2. STANDARD SOLUTIONS OF THE BASIC EQUATION
2.1. Primary solution

In this section we derive properties of solutions of the equation
d?w/de? = tm2m—2w. (2.1)

For the case in which ¢ is a real variable and m — 2 is a non-negative integer, Olver (1977 a), with
a slight change in notation, adopted the function

U(t) = (2t/m) Ky, (£47) (2.2)

as a standard solution, K denoting the modified Bessel function in the usual notation. We continue
to employ this solution in the more general circumstances which we now contemplate, that is,
when ¢ is a complex variable and m has any positive real value. The functions on the right hand
side of (2.2) are understood to assume their principal values when pht = 0, and be defined by
continuity for other values of pht.

Properties of U(t) are easily deduced from those of Bessel functions, given for example in
National Bureau of Standards (1964, ch. 9). Thus if m is an integer such that m > 2, then U(¢) is
entire. For other values of m, U(t) has a branch-point at ¢ = 0 and is analytic at all other finite
points of the #-plane.

Ast—>0

2@-my2m) /1
(O P(-”—z) . (2.3)

In the same circumstances the asymptotic form of U’(¢) is given by

2@—5m)[@m)y, [{ In¢ 2—(2-+m)i(2m) 1
[P A S I i — .
= (m )t > B or = F( m) , (2.4)
accordingasm < 1,m=1orm > 1.
As t—>o00
U(t) ~ tie-mexp (—tim),  U'(t) ~ — mttm=exp (— thm), (2.5)

each of these relations being valid when |ph¢| < (3—¢)n/m. Here & denotes any constant such
that 0 < d < 1.

We shall use the approximations (2.5) only in the sector |pht| < 2n/m, and in this region
uniform error bounds are supplied by the following results:

Ult) = the-mexp (—m) {1 +9(2)}, (2.6)

A{tin-2U (1)} /dt = — mdn=D exp (— thm) {1 +9(8)}, (2.7)

where [9(8)], |94(8)| < O™ (|pht| < 2n/m), (2.8)
and O(t) = exp n_(é;;;;ﬂ) —1. (2.9)

Thus &(¢) and 91(¢) are both O(¢-#™) as ¢—>oo in the sector. To verify (2.8) set z = t™ and
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9(t) = e?h(z). Then from (2.6) and (2.7) we find that 9'(f) = —c%t’(2). Using the differential

equation ,
K (2)) = (14 ) EHim(2),
and making the substitution
22 Kyn(2) = (3m)¥e* +h(2)},
we obtain k' (z) = h(z) = (4—m?) (4m22%)~He~*+h(2)},
and hence, by variation of parameters,

4 —m?
) =2 [ (o) )

On solving this integral equation by means of theorem 10.2 of Olver (1974, ch. 6), and using the
relations (13.03) and (13.05) of the same reference, we conclude that |4(z)| and |4'(z)| are both
bounded by |e~*| ©@(z) when |phz| < m. This result is clearly equivalent to (2.8). Compare also
Olver (1964, §§5 and 7).

Asymptotic forms of U(t) as {— o in other phase ranges will be found in §2.4 below.

When m — 2 is a positive integer further properties of U(f), particularly the location of its zeros,
may be derived from results of Swanson & Headley (1967) and Headley & Barwell (1975). In the
notation of these authors

U(t) = (3n)¥(2/m)Himm cosec (. /m) Ay {(bm)¥ms).

2.2. Secondary solutions

We definet

U(t) = Ute-2imim)  (j=0, £1, +2,...). (2.10)

Clearly Uj(t) is a solution of equation (2.1) that is recessive as { —c0 in the sector S}, defined by
(2j—1)n/m < pht < (2j+1) n/m. (2.11)

These sectors are indicated in figure 1. From (2.6) to (2.9) we obtain

Uy(t) = ie-dmimea@=—m exp { — (te~2mm)dmy (1 4+ 9,(1)}, (2.12)
d{tim-2U,(£)}/dt = — mi~Te=imimghon=2) exp { — (te~2mim)im} (1 + 91(1)}, (2.13)
where [95(8)], |93(8)| < O(sim), (2.14)
valid when (2/—2)n/m < pht < (2j+2) n/m. (2.15)

Ficure 1. Sectors S;.

t This notation should not be confused with that of Olver (19774).
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Whenm > 1 the Wronskian of any pair of solutions U;(¢) and Uj(¢) is easily calculated by letting
t— 0 and referring to (2.3) and (2.4); thus

W{U(1), Up(t)} = (e2mim — e=2miim) U(0) U'(0) = mie Uthmma, (2.16)
_sin(k—j)n/m
where Aj,k = —'—W (2.17)

The validity of (2.16) when 0 < m < 1isthen inferred by temporarily supposing m to be a complex
variable and appealing to analytic continuation. When 1/m happens to be an integer the ratio
of the sine functions in (2.17) is to be replaced by its limiting value, that is,
Aj = (= )&=3-Dm(k—j), 1/m = an integer. (2.18)
From (2.16), (2.17) and (2.18) we conclude that U;(#) and Uy(t) are linearly independent
solutions of (2.1), provided that

k #j4, when 1/m = an integer, (2.19)
or
k #j(modm), when 1/m # an integer. (2.20)

We also note that if 1 /m is not an integer and £ = j (mod m), then m is necessarily rational and the
sector S}, is a superimposition of S; in the complex plane. In particular, if m is an integer such that
m > 2, then there are only m distinct sectors S; and m distinct solutions Uj(f).

2.3. Connection formulae

The linear relation satisfied by any three secondary solutions may be found as follows. From
the connection formulae for the modified Bessel functions given on page 376 of National Bureau
of Standards (1964) we have

sin (1/m) Kyyn(z €M) = sin (r/m) e/mK,,,(2) + misin (je/m) Lyn(2).
On replacing j by £ and / in turn and eliminating K,,,(z) and I, (z) from the resulting three
equations, we arrive at

sin{(k—1) n/m} Ky, (ze=™) +sin{({ —j) n/m} Ky, (z e %) +sin{(j — k) n/m} Ky, (z e ™) = 0.
Hence from (2.2) and (2.10) the desired formula is seen to be
sin {(k —[) m/m} e™imU,(t) +sin{(I - j) n/m} ekmiimU} (¢) +sin {(j — k) n/m} e™mU(t) = 0.

(2.21)
Special cases that will be required in the next subsection are given by

Uj(t) = F el i=0mimA, 3 Uy (8) £ %702y s Un(0), (2.22)
the upper or lower signs being taken consistently throughout.

2.4. Further asymptotic forms of the secondary solutions

Let us assume that 2kn/m < pht < (2k+2)n/m. Then ph satisfies (2.15) with j replaced by
either £ or £ + 1. Substituting in the right hand side of (2.22), with upper signs, by means of (2.12)
we derive

Uj(t) = ik-tedmim,  ghe=m exp {(¢e2hmim)im} {1 4 By, (1)}
+ike-dmim, ,  pR@=mexp {— (te~2hmim)dmy {1 + 9, (1)}, (2.23)
where 9,(t) and 9,,(¢) are subject to (2.14).
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508 F. W.J. OLVER

At this stage it is convenient to introduce some terminology apropos the sector §}.. First, we call
the ray ph t = (2k+ 1) n/m the left boundary of S, owing to its orientation when viewed from the
vertex at ¢ = 0. Similarly pht = (2k— 1) n/m is called the right boundary of S,. Next, we call the
sectors 2kn/m < pht < (2k+1)n/m, (2k—1)n/m < pht < 2kn/m,
the left and right parts of S, respectively. And if § is a constant such that 0 < § < 1 we call

(2k—8) m/m < pht < (2k+8) n/m
an internal part of S,

With these definitions, (2.23) is valid in the left part of S}, and also in the right part of S, ;. The
corresponding asymptotic approximation in the right part of S}, and the left part of .§;,_; may be
obtained by use of (2.22), with lower signs, or by changing £ into £—1 in (2.23). Either way
yields

Uj(t) = ik-tedmim, ; phe=m exp {(¢ e 2hmim)imb {1 + &, 4 (1)}
—ike=dmimp, ) (i@m exp { — (te~2hmimyim} {1 4+ 9, (1)} (2.24)

Analogous results for the derivative are expressed by

DU (1)}t = ni-h-te-smim, =D exp {(te-tm) b (14 8]0}
F dmiben s,y 20D exp {— (e (14940, (2.26)

the upper signs being taken when ¢ lies in the left part of S}, (or the right part of S},,), and the
lower signs being taken when ¢ lies in the right part of .S}, (or the left part of .S},_;).

2.5. Auxiliary functions

Throughout this subsection we assume that the conditions (2.19) and (2.20) are fulfilled,
ensuring that A; ;, # 0.

From (2.12), (2.23) and (2.24), we see that as ¢{— oo the solution Uj(#) is recessive in §; and
dominant in §;; by symmetry U, (f) is dominant in §; and recessive in S. In consequence, Uj(t)
and Uj(¢) comprise a numerically satisfactory pair of solutions in the closed region S; U S},
except possibly in the neighbourhood of ¢ = 0. For our purposes Uy(f) and U, (¢) comprise an
appropriate solution basis in §; U 8}, and in order to majorize these solutions in a satisfactory
manner, we follow the procedure of §8.3 of Olver (1974, ch. 11), and introduce auxiliary weight,
modulus and phase functions, as follows.

We define a function ¢(¢) by the formula

e(t) = |exp ()it} | (€ S)), (2.26)

for every integer j, where the branch of £ is |¢|#™ exp (4mi ph ). On the boundaries of §; we have
e(#) = 1, hence e(¢) is continuous everywhere. Furthermore, ¢(f) > 1. As weight functionin §; U S,
we shall adopt E; ,(t), defined by

E; () = 1/e(t)  (t€S)); Eju(t) = e(t) (2 Sy). (2.27)
Clearly E; , is continuous, and E; ,(0) = 1. Also, with E;7}(¢) denoting 1/E; ,(t), we have
Modulus and phase functions are defined in §; U S, by the equations
|U; ()] = Ejx(t) My () cos 0;,1,(8),  |Up(8)| = Ej5(¢) M;,1,(2) sin 0;,,(8), (2.29)
| U5 ()] = Ejx(t) Nji(8) cos ;1 (8),  |UR(0)] = Ezi(8) Njs(2) sin oy, 5(8). (2.30)
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In consequence

My 1 (0) = {E530) | U0 |2+ £3,1(0) | Un(D)]1,
n(8) = {E55(0) [ U0 |2 + E3 1(8) | UL |},

0; 1(¢) = arctan{E3 t) | U (8)/U;(8)3,

w; (t) = arctan {E£3 ,(¢) |U(t)/U;(®)|}.

Each of the functions M; ,(¢), 0; ,(¢), N; ;(t) and w; ,(¢) is continuous in S; U Sy, except that

N; i (t) has an infinity at # = 0 when 0 < m < 1. Symmetry properties follow from (2.28), and are
given by
My 3(8) = My 5(8),  05,0(8) + 0y 5(8) = 3, (2.31)
. () = N3 (8)s - 05,0(8) + 0 5(8) = . (2.32)
At the origin
M;,,(0) = 28| U(0),  0;,4(0) = w;4(0) = §m, (2.33)
N; ,(0) =28 U'(0)] (m>1); N;,(0) =00 (0<m<1). (2.34)

The asymptotic behaviour of the modulus functions for large |¢| may be deduced from (2.12),
(2.13), (2.23), (2.24) and (2.25). In internal parts of §; and .}, we find that

My () ~ (1423 1) e[e-m, (2.35)
Ny alt) ~ (1423 ) Hgjion-, (230

And in these circumstances the phase functons 0; ,(f) and w; ,(¢) tend to constant values, both
values being arctan |A; ;| in internal parts of ; and arccot |A; ;| in internal parts of .

In the full domain §; U S}, the modulus and phase functions fluctuate as ¢ oo. In the case of
M, () we shall employ the following uniform bound, again derived from (2.12), (2.23) and

7
(2.24):

M; . (t) < G |tfe-m{1 + 0™} (teS; US,), (2.87)
where Cio =max [{1+ (|, |+ A o), {142, +1 A, 6a]) 3] (2.38)

No such simple bound is available for N; ,(¢), and for this reason we shall sometimes find it
convenient to work in terms of another pair of modulus and phase functions, defined by

|0, (0)}/dt] = [ein2E, (1) B, (1) cos o 40, (2.39)
|d{ekm-20,(0)}/de] = | nDETL(0) N 1(¢) sin @, 1.(0). (2.40)
Some of the corresponding properties of N ;.1(2) and @; ,() are given by
8,40 = [ee-mE73() |d{ti<m-2>U (0} /di]? + B3, (1)| dfekn—2T, (1)} /13,

&, 4(t) = arctan [E2 ,(¢) |[d{tke—0, (1)} /dt]/ |d{eon-oT, (1)} /], (2.41)
N?’,k(t) = Nk,i(t), ®; (1) + by, 5(2) = Fm, By 4(0) = im,
and R, 1(t) ~ 3m(1 423 )4t [hom—2 (2.42)

as t—o0 in internal parts of §; and .S}, Lastly,

N, () < 3mC; 1 |t)iem—2{1 + O(tkm)}  (te S; U S,). (2.43)

46 Vol. 28g9. A.
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3. MAIN APPROXIMATION THEOREM
3.1. Primary assumptions

In this section we seek approximate solutions of the differential equation
dw/dz? = (f{u,2) + 80, 2)}w, (3.1)

in which # is a positive parameter and z ranges over a bounded or unbounded open complex
domain D, which may depend on u. We suppose ¢ to be a given interior point of D, which may
depend on u, and m to be a positive constant. Then (z— ¢)?™f{y, 2) is assumed to be holomorphic
and non-vanishing throughout D, including ¢. The function g(x, z), also, is assumed to be holo-
morphic in D except possibly at ¢; at this point we require

gu,z) = O{(z—c)r 1} (z—c¢), (3.2)

where v is a positive constant. (Condition (3.2) suffices for our present purposes, but it could be
eased somewhat without affecting the final conclusions.)

Because f(u,z) and g(u, z) may have branch-points at ¢, we do not confine D to a single
Riemann sheet. Any number of sheets may be used, provided that D is simply connected on
the aggregate Riemann surface.

3.2. Preliminary definitions and transformations

Following the treatment of the real-variable case given in Olver (19774, §3.1), we introduce a
new variable { = {(u, z), defined by

- { J: Fh(u, 1) dt}zlm. (3.3)

The branches of the fractional powers in this relation are determined as follows. Let the Taylor-
series expansion of (z—¢)>*™f(u, z) in the neighbourhood of ¢ be denoted by

(z=0)*"f(u, 2) = fo+fi(z—¢) +folz—¢)* + ..., (3.4)

where f, # 0. Substituting for f(u, z) in (3.3) and integrating term by term, we find that { has a
Taylor-series expansion that begins

g:(g)zlmfym(z—c){ TP P S (3.5)

m m+2 f,

We select any branch of the coefficient f}™ that is convenient. This fixes the relation between
¢ and z in the neighbourhood of ¢; elsewhere § is determined by continuity.

Having prescribed {(u, z) in a unique manner we define 4 to be the map of D on the {-plane.
Like D, 4 is a domain that may lie on an enumerable set of Riemann sheets. We suppose, however,
that D is restricted in such a way that the mapping from D on to A is one-to-one. In particular, this means
that the only point of D at which the right hand side of (3.3) may vanish is ¢. And since the only
possible zero or singularity of f(u, z) is located at ¢, it follows that {(u, z) is holomorphic in D, and
therefore that the mapping from D on to 4 is conformal.

Next, for every integer j we define D; to be the map on the z-plane of 4n §;, where §; is the
sector defined in §2.2. We call D, a principal region associated with the transition point c. (Although D, is
simply connected, it is not necessarily connected, and therefore may not be a domain in the
ordinary sense.)
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A simple illustration is provided by taking
f(u,z) = 22/(1 —2)65 g(u,z) = 0,

with D comprising the z-plane after removal of the interval [1, c0). In this case equation (3.1) has
a double turning point at the origin and an irregular singularity at z = 1. From (3.3) with¢ = 0
and m = 4, we find that ¢ is given in terms of z by the fractional linear transformation

£ = z/{2H(1-2)}.

Corresponding regions of the mapping are indicated in figures 2 and 3. The turning point
remains at the origin, and the points z = 1 and co are projected to { = oo and — 2%, respectively.
Thus A comprises the whole ¢{-plane with the interval (—oo0, — 2] deleted. The mapping is
one-to-one, as required, and the boundaries of the principal regions are circular arcs and also, in
the case of D,, the interval [1, c0).

FicUre 2. z-plane. Ficure 3. {-plane.

Returning to the general problem, we continue to follow Olver (19774, §3.1), and define

fu,z) = Fw2) _ (‘K)z; (3.6)

= melm—2 dz

compare (3.3). Evidently f(u, z) is holomorphic and non-vanishing in D.
Next, we introduce a balancing function 2(¢). This is any convenient positive real function of
the complex variable ¢ that is continucus and satisfies the condition

Q(t) = O(thm-2), (3.7)
uniformly in the neighbourhood of # = co. An admissible choice is given byt
Q) = (L+ [ /(1 +]2]). (3.8)
Associated with Q(¢) we define p; ; to be the constant
Pig = sup {€(t) M3 (1)} (3.9)
teS;u Sk

In consequence of (2.37), (3.7) and the fact that M; ;(¢) is continuous in §; U S}, the value of
Pj.x is always finite.

t The choice 1+ |¢|3m-2 that was used in the real-variable case is also suitable here when m > 2, but not when
0 < m < 2 because of discontinuous behaviour at the origin.

46-2
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Lastly, we introduce the error-control_function

Hins) = | {ﬁadziz ( f%(zlt, z)) B ,f%(f;,?)} Q(:;mé)' (310

Any branches of f4(u, z) and f#(u, z) may be used, provided they are continuous in D and the
latter is the square of the former. The choice of integration constant is immaterial.

3.3. Statement of theorem

THaEOREM 3.1. With the assumptions of §3.1 and the definitions of §§ 2 and 3.2, let A and B be arbitrary
real or complex constants, and a; be an arbitrarily chosen reference point in the closure of D, including the point
at infinity. Let Hy(a;) comprise the set of points z in D; U Dy, that can be joined to a; by a patht P that lies
in D; U Dy, and satuisfies the following monotonicity condition: as t travels along 2 from a; to z the real part of

E(,2) = f 1) dt (3.11)

is non-decreasing, where the branch of this integral is continuous and has non-positive real part in D ; and non-
negative real part in D, Then with conditions (i), (ii) and (iii) given below, equation (3.1) has a solution
w(u, z) that depends on A, B and a;, is holomorphic in D punctured at ¢, and is continuous at c. Furthermore,
when z € Hy(a;)

w(u, z) = f3(u, z) {AU;(u2mE) + BU(u2mE) + e (u, §)}, (3.12)
where}
le(x, ©)| | de(u, §)/0g]  |Ofghme(u, £)} /3]
M (@) N, (unE)  gEm| JEmD R (42mE)
< DLE umg) |exp [ A ()| 1], (319
and O = il:g {Q(u2mv) E 3, (udm) M; 1 (u?™) | AU (™) + BU,(u2™)|}, (3.14)

A; i, being defined by (2.17) and (2.18), 2 denoting the §-map of P, and the variation of H in (3.13) being
evaluated along P.

The supplementary conditions are as follows:

(i) kis an integer other than j. If m is a rational number of the form m, /m, where m, # 1 and
m, and m, are mutually prime positive integers, then we require |k —j| < m,. For all other values
of m, k is unrestricted.

(ii) Ifthe ¢-map of g; is at infinity, then we suppose that it is the point at infinity on a path &
in §; and require & to coincide with % in the neighbourhood of a;.

(iii) When ze D, the bounds (3.13) apply only to the branch of w(x, z) obtained by analytic
continuation from D; in the neighbourhood of ¢ by rotation through an angle 2(k —j) n/m, the
sense of this angle being the same as the sign of £ —j.

Remarks. (a) Any path £ that satisfies the monotonicity condition of the theorem will be called
a progressive path. It should be observed that when ze D and £ —j = + 1 itis possible to satisfy the
monotonicity condition without the need for Z to pass through ¢.

+ Strictly, by ‘path’ we mean a Jordan arc composed of a finite chain of R, arcs in the sense defined in §3.4 of

Olver (1974, ch. 5).
+ The symbol ¥~ denotes the variational operator as defined in §11.5 of Olver (1974, ch. 1).
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(6) For the theorem to be meaningful it is necessary that the right hand side of (3.13) be finite.
In the first place this condition requires ¥ (H) to converge. Next, if £ and j satisfy condition (i),
then it is easily verified that (2.19) and (2.20) are satisfied, ensuring 1/|A; ;| is finite. It is also
essential that o ; be finite. From the properties of the auxiliary functions given in §2.5 and the
assumed property (3.7) of the balancing function, itis seen that the content of the bracesin (3.14)
is finite at all finite points vin §; U §}, and bounded as v+ o0 in ;.. Asv—>ocoin an internal part of
§;, however, the content of the braces in (3.14) is unbounded, unless B = 0. Accordingly, if the
§-map of a; lies at infinity in an internal part of S; then the theorem may be applied only in the case
B=0.

(¢) The asymptotic nature of the error bounds (8.13) for large values of u is investigated in
section 4. :

3.4. Proof when c is a multiple turning point

Throughout this subsection we suppose that m is a positive integer other than 1, and g(«, z) is
analytic at ¢. Thus the differential equation (3.1) has a turning point of multiplicity m— 2 at ¢,
and all solutions are analytic at ¢ (as well as at all other points of D).

On introducing a new dependent variable W given by

w= W, (3.15)

where the dot signifies differentiation with respect to §, we have a Liouville transformation of
(3.1) from the variables w and z to the variables W and §. The transformed equation is given by

dHW/AEH = {ImPutn—2+ B (u, O} W, (3.16)
where B, §) = 2Hd2(z1) /dEs + 22 (u, 2). (3.17)

In the present circumstances g(«,z) is holomorphic in D. We also know that z = z(4,{) is a
holomorphic function of { in 4 and Z is non-vanishing. Hence ¢(«, §) is holomorphic in 4.
From (3.6), (3.12) and (3.15) we see that

W = AU;(um§) + BU, (™) +€(u, §). (3.18)
Next, from (2.1) with ¢ = ¥¥™{ we derive

d¥AU;(u"E) + BU, (u¥m8)}/AE? = m2uEm—HAU;(u*™E) + BU(u*™E)}. (3.19)

On substituting in (3.16) by means of (3.18) and then subtracting (3.19), we arrive at the follow-
ing inhomogeneous differential equation for e(u, {):

d%/dg? — ym2urtm=%e = p(u, {) {AU;@¥™) + BU,(u¥™C) +é}. (3.20)

An equivalent integral equation is obtained by applying the method of variation of parameters
and using the Wronskian relation (2.16); thus

i

14
e(u,§) = Wf K(&,v) ¢(u,v) {AU;(u2™) + BU,(u*™v) +€(u, v)} dv, (3.21)
%
where { = a; corresponds to the reference point a;, and
K(&v) = e+omimpz L (U (un8) Uy(u?m0) — Uy (umE) Uy(um)}, (3.22)

The integration path in (3.21) is taken to be the {-map 2 of £, It therefore lies in §; U §;.
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From (2.26), (2.27) and the definition of £(u, z) it is seen that E; , (u¥™{) = |e*|. Hence in
consequence of the monotonicity condition we have

E; (u¥™y) < E; ;,(u?™g) (ve2). (3.23)
Substituting in (3.22) by means of (2.29) and using (3.23), we find that
|K(&,0)| < |47 K| By, (u¥m8) E7 5 (umo) My 1, (um8) M 5o (w?m0). (3.24)
Similarly,
[0K (8, 0)/08] < | A5 %] utmE; (u¥m8) Ej 3 (um0) Ny (u?™8) M, 1 (uh™). (3.25)

The integral equation (3.21) may now be solved by successive approximation, for example, by
application of theorem 10.2 of Olver (1974, ch. 6). Provided that f {|¢(u,v)|/2(u2™)}|dv| con-
verges as v—o; along 2—and this will be justified shortly—we conclude that there is a unique
solution €(u,v) that is twice continuously differentiable along 2 and enjoys the properties

e(u,v) Oe(u, v) /Ov 50
E; . (@@m) My  (um™y)’ B (u?™) N; g, (u2m)

as v —a; along 2. Furthermore, when ve 2
|€(u,v)| Iae u,v)/avl g Lk [CX Pi |¢ | |d |;
E; 1(u?m) M (u®™)*  wmE, 4 (u?m) Ny 1, (u™) = p; P m|A; g|udm™ ) o,
(3.26)

where p; ; and o, are defined by (3.9) and (3.14), respectively. In particular, these inequalities
hold when v = {. We now transform back to the z-plane in the manner of §11.2 of Olver (1974,
ch. 6) using the identity

f!) u2/m§ (3.27)
obtained from (3.6), (3.10) and (3.17). This yields the first and second of the inequalities (3.13);
it also establishes the convergence of the integral within the braces in (3.26) since ¥ (H) con-
verges, by hypothesis.

To establish the remaining inequality in (3.13), we use the bound

|B{LAm2K (8, 0)}/08] < |A7k[udm| LR E;  (w¥mE) By (um) By (u¥mE) M, i (um), - (3.28)
obtained from (3.22) with the aid of (2.39) and (2.40).

Remark. With the conditions adopted in the opening paragraph of this subsection passage
around any closed circuit in D leaves the solution w(«, z) unchanged. Also, M; ;.. ,,(u*™{) is the
same as M; ,(«2™¢), and so on. Hence in the present circumstances condition (i) of §3.3 may be
eased to k # j (mod m).

3.5. Proof in the general case: preliminaries

When m is permitted to assume positive values other than 2, 3, 4, ..., and g(u, z) may besingular
at ¢, the analysis of § 3.4 can be retraced until we reach the integral equation (3.21), with the
modification that ¢(u, {) may be singular at { = 0. As we saw in §§2.1 and 2.2, U;(u?™{) is con-
tinuous at { = 0, but its derivative U} (u?™{) is infinite at this point for certain values of m.
Similarly for U, (u2/m§). Hence although ¢(u, v) represents a continuously differentiable solution
of (3.20) on 2n §; and another continuously differentiable solution on 2n S}, because of
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the discontinuity in 0e(u, v) /0v at v = 0 it is no longer obvious how the two solutions are related.

In order to resolve this difficulty we now suppose that 2 denotes an arbitrary path in 4n
(8; U S;) that begins at o; and terminates at an arbitrary point f; in ;. We shall suppose that
E; ,(u¥™p) is non-decreasing as v travels along 2 from a; to f;; in other words, £ has to be the map
of a progressive path in the sense defined in remark (a) of §3.3. Next, we denote by §; ; the union
of §;, 8§ and all intervening sectors, thatis, §;,, §;,9, ..y Sy if & > j, 00 8; 1, 85, ...y Spyq if
k < j. Instead of solving (3.21) directly on 2, we first indent 2 in the neighbourhood of the origin
by a circular arc of radius w?™, where @ is a positive constant that is sufficiently small to ensure
that this indentation is contained in 4n §; ;. The indented path will be denoted by 2,,. As we
travel along 2, from a; to f;, we suppose that the origin is passed in the positive or negative
rotational sense according as £ > j or £ < j; compare figure 4.

S‘+l

J

Ficure 4. {-plane: path 2, when & > j.

We shall need another expression for the kernel of the integral equation (3.21), given by
K(g,v) = ewram/mp 1L (u2/mE) U, (u?™) — U, (u*™&) Uy, (u™v)}. (3.29)

Here p and ¢ are any two integers such that A, , # 0. This formula is obtainable from (2.21) and
(3.22) by straightforward substitutions.

We shall also need to associate certain auxiliary functions with §; ; in addition to those of § 2.5.
First, we define a weight function E; ;(¢) by the formulae

By p(t) = 1/e(t) (teSy); Eju(t) =e(t) (1¢S)).

Clearly E; ,(¢) is continuous in S, ;. Secondly, we denote by { j, £} the set of all integers from to £,
inclusive. Then for every pe{j, £} and e S, we define

,4(0) = max (M, (0} (ge(j, K-

Since each modulus function M, ,(#) is continuous in S, it is easily seen that A4 ;(t) is continuous
in §; ;, except possibly on the boundaries of the sectors that intervene between §; and §;. In
order to prove that M ,(¢) is continuous on these boundaries, we assume temporarily that £ > j,
and let ¢ be any point on the left boundary of §,,, where j < p < £— 1. On referring to the defi-
nition (2.10) and rotating the #-plane, we see that U, (t) = U, (¢'), where ¢’ is the point on the left
boundary of §,,, such that |¢'| = |¢|. Again, from (2.10) and the fact that U(¢) is real on the
positive real z-axis it follows that U, ,,(f) and U, ,(#") are complex conjugates. Hence | U, (¢)| =
|Up11(2)]. This implies that A ,() has the same value whether ¢ be counted as a member of
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S, or S,,;. Therefore A ,(¢) is continuous on the boundary $,n S,,,,. Similar analysis may also
be used when £ < j, and we therefore conclude that M; ,(¢) is continuous throughout S, ..
In an analogous manner, for every pe{j, k} and t€ S, we define

Nj(t) = fql:fjlaX{Np,q(t)} (g€{j, }).

By similar analysis we see that N, ,(¢) is continuous in S} ;, except at ¢ = Owhen 0 < m < 1.
From the definitions of A1 ,(¢) and N, ,(¢) it is immediately clear that

My, () = My ;(8), Nj,(8) = N 4(2). (3.30)

Also, from the asymptotic properties of M; ,(¢) and N ,(¢) given in §2.5, we derive

M,

25

k() = O(He=m), - N4 (f) = O(tim=2), (1> in §; ;). (3.31)

J

3.6. Proof in the general case: conclusion
LemMA. If v and § are points of 2., in the order oy, v, §, By, then
|K(&,0)] < A7k €24 By o (u2mE) By 3o (u?/mo) My, 1 (w?/mE) My, 1 (u?™), (3.32)
0K (&, 0) /08| < A5 ume B, (u?mE) By 3 (u2/mo) N (/™) My i (u™),  (3.33)
where A= mirql|/\p,q| (pel{j, k), qelj,k}). (3.34)
»

To prove this result, we note first that the constant A; ; is non-zero. This follows from condition
(i) of §3.3 and the definitions (2.17) and (2.18) by observing that 0 < |¢—p| < |k—j|. Next, we
observe that details of the proof need be supplied only when £ > j: the analysis for £ < jis exactly
similar. We denote the part of 2, that coincides with the circular arc of radius @*™ by .£ . There
are five cases to consider.

(i) Suppose that {e §;. Then ve S;. The inequality (3.23) applies unless {€ %, n S;. However,
from the definition of E; ; (§2.5) it is easily verified that the weaker inequality

E; p(u?m™) < ey (u¥mf) (3.35)

applies without restriction. Substituting in (3.22) by means of (2.29) and using (3.35), we find
that
|K(&v)| < |Aj%| e2mE; 1 (u2mE) E7 5 (umv) M; 1, (u2™E) M 1 (u?™) (3.36)

compare (3.24).
(i) Suppose that {eS,, wherej+1 < ¢ < &, and ve S;. Then from (3.29) with p = j we have

K (&, 0)] < A5 Uy(utmg) T (udimo) — Upfurmg) Uy(um)|.
Referring to (2.29) and (2.27) and recalling that e(f) > 1 for all ¢, we derive
|K(&,0)] < A7k e(umE) e(u2mo) My o (u2m8) My o (umo).

(ili) Suppose that {e€ S, and ve S, where j+1 <p < ¢g—1and j+2 < ¢ <k Then veJ,.
From (3.29) we derive

K (& 8)] < T4 Uy (u38) Uy(um) — Uy(utmg) U, (um) .

s
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Since |v| = w?m it follows that
e(udmy) < e2me=l(umy),
and hence that
[K(&,v)| < A7) erme(utmE) e (utmv) My, o(u2™E) M), o (u?™v).

(iv) Suppose that{e S, andve S, wherej+1 < ¢ < £— 1. Then we use (3.29) with p replaced
by j. Using reasoning similar to that of (iii), we arrive at

K(&v)| < A% e2@e(u2ml) e (u2mv) M, (wB™E) M, (u2m™).
A3, N i.a

(v) Lastly, suppose that {€ .5, and ve.S;. Then (3.35) holds and from (3.22) we deduce that
(3.36) again applies.

All possible combinations have now been covered, and by combining the results and referring
to the definitions and properties of E; ,, M; ,, E; ; and M; ;, given in §§2.5 and 3.5, we perceive
that (3.32) applies in all cases. The proof of (3.33) is similar.

Having established the bounds (3.32) and (3.33), we may solve the integral equation (3.21)
along 2, by application of theorem 10.2 of Olver (1974, ch. 6). Corresponding to (3.26) we find
that

le(u, ©)] |0e(u, & /(‘)gl < 2 [ {ezmﬂpa k J‘g |$(u, v)]| } ]
_ ik —1
o2 M () wml (u2mE) N, o (u®mC) Py exp M, utm ) o, 2(u2m) |dv]
' (3.37)
where the integral is evaluated along 2,
P = sup {2(t (¢) M3, 1(t)}, (3.38)
€ jk
and T = = sup {Q(um) E73,(u2™) M; ,,(u2™) | AU, (u?™) + BU,(u2mv) |}. (3.39)

vedy

In consequence of (3.7) and the first of (3.31) p; ; is always finite. Also, @;  is finite whenever
0,1, is finite; compare remark (5) of §3.3. Moreover, because ¢(x, §) is twice continuously differ-
entiable along 2, it satisfies the differential equation (3.20) everywhere on 2,,.

Let us now suppose that {is any prescribed point of 2 n S, other than the origin, and consider
the behaviour of the integral

[, K& $l,0) (AT um) + BU ) + e, )} o (3.40)

as w— 0. First, since each of the functions appearing within the braces on the right hand side of
(3.89) is a continuous function of » at the origin, it follows that @; ;, is bounded as w — 0. Next,
from (3.2), (3.5) and (8.17) we deduce that

$(u,0) = O()  (v->0),

where y; = min (, 1). Substituting in (3.37) by means of these results, we conclude that |e(x, v)|
is bounded as w-> 0, the bound being uniform with respect to v€.%,. Lastly, since we also know
that K(¢,v) is a continuous function of » we deduce that the integral (3.40) vanishes as w - 0.
We have therefore established that when {e 2n S}, and { # 0, the solution ¢(u, §) of the differ-
ential equation (3.20) obtained by analytic continuation along %, from S to S, also satisfies the
integral equation (3.21) along 2. Furthermore, ¢(x, {) is continuous on 2, including the origin.
Now we can also construct a solution of (3.21) on 2 by use of (3.24) and direct application of the

47 Vol. 28g. A.
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method of successive approximations.} Furthermore, this method also shows that: (i) there is
only one solution. that is continuous on 2 and has the property

e(u, §) = B (L) M, (wmg) O(1)

as {—>a; and also as {—> f;; (ii) this solution is subject to the bounds (3.26).
The remainder of the proof is completed as in §3.4.

3.7. Additional remark on theorem 3.1

It might be thought that the condition on kimposed by § 3.3 (i) is a consequence of the method of
proof that we have adopted. This is not so, however, and the underlying reason is as follows.
Let m = m,/m,, where m, and m, are mutually prime and m; > 1. Suppose also that B = 0 and
k—j = +my. Then A, ;, = 0, and from (2.23) and (2.24) we see that the approximant f~#(x, z)
AUj(u*m™{) in (3.12) is recessive as {— o0 in Sy, in contrast to its dominant behaviour in all sectors
that intervene between §; and §;. We cannot expect the true solution w(u, z) to be recessive in
exactly the same circumstances.

4, ASYMPTOTIC ESTIMATES OF THE ERROR TERMS
4.1. Preliminary remarks

The inequalities for the error term and its derivative supplied by theorem 3.1 are valid for any
value of the positive parameter . In §1 it was stated that the object of the present paper is to
construct uniform asymptotic solutions of the differential equation (1.2) as #— co. Accordingly,
we now consider circumstances in which the error term is sufficiently small for the theorem to
supply meaningful approximations when « is large. On referring to (2.29), (2.30) and (3.12) we
see that in the archetypal case, 4 = 1 and B = 0, we require

e(u,§) = Ej i (um8) M; 1, (u*™8) o(1), 0e(u, §) /08 = Ej, 1 (u¥™E) Ny, (w™E) 0(u®™),

as u—> 00, uniformly with respect to z. Again, when 4 = 1 and B = 0 it is seen from (2.29), (3.9)
and (8.14) that o ;, < p; ;. Hence from (8.13) both asymptotic conditions just given are met when

Vo, (H) = 0(@™) (4~ c0), (4.1)

this variation being taken along the progressive path Z.

Whether the condition (4.1) is satisfied depends largely on the manner in which the parameter
u enters the functions f (u, z) and g(«, z), and each application may be examined on its merits. In
practice, a commonly occurring case is that in which f (, z) and g(«, z) are independent of u. Some
simplifications then become available; for example, the principal regions are independent of u.
In the present section we shall examine this case in detail, using analysis similar to that for real
variables given in §5 of Olver (19774).

Before we begin, we introduce the L.G. error-control function defined by

rwd = [{ g @ (ras) - A & “3

For thisintegral we shall not use paths that intersect ¢. Any branches may be adopted for f(u, z)
and f%(u, z), provided that they are continuous and the latter is the square of the former.

+ But not, in this instance, by use of theorem 10.2 of Olver (1974, ch. 6), because not all the conditions are
satisfied. However, the general method of successive approximations is still applicable, and yields the stated results.
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Next, we give the following expression for the error-control function H(u,z), obtained by
substituting (3.6) in (3.10):

H(u,z) = gf{fi(zt, z)ac%(ﬁ(zlz, z)) —Ji(z:,z.z))}%(;’j’)‘g)z " f§29 urmg)

The two integrals in this expression may not converge separately at z = ¢, but this is immaterial.

(4.3)

4.2. Asymptotic estimates for paths

TurOREM 4.1. (i) Assume the conditions of §§ 3.1 and 3.2 are satisfied, and that the functions f and g are
independent of u. Let a; and ay, be arbitrary points in the closures of D ; and D, respectively, including the point
at infinity, and P be a progressive path connecting a; and ay. Assume also that each of the functions 1/£(z)
and F(z), defined by (3.11) and (4.2), is of bounded variation as z->a; or a;, along P. Then

w Y y(H) = O(Y)  (u—>0), (4.4)
where VUp=u"t (0<m<2(1+y,)),
Y =utnu (m=2(1+7)), (4.5)

i = I (> 2(147,)),

and v, = min (y, 1). (4.6)
(ii) If, in addition, g(z) is analytic at c, then

w i p(H) = 0(Xn) (4->c0), (4.7)

wheret Xm=ut (0<m<4), y,=u'lnu (m=4), x,=ut" (m>4). (4.8)

The proof is given in the following two subsections.

4.3. Proof of theorem 4.1 when a;, ay, {(a;) and {(ay,) are finite

In this subsection we assume that a; and a;, are finite and { remains finite as z— a; or a;, along 2.
We also assume that ce #. (Compare remark (@) in §3.3.)

Let «;, a;, and 2 again denote the {-maps of a;, a;, and &, respectively. Referring to (3.10) and
transforming to the {-plane, we find that

Vo(H) = f dg] (4.9)

,{ fizz)ag‘lzz‘z( f*l(z) fé‘il}ﬁé 2ng)

where the integral is evaluated along 2. Because dz/d¢, f—1(z) and the derivatives of f—4(z) are
continuous on £, it follows that

<4 (Ce2),

1 \dz
f& d.z2 fiz)

where 4 is an assignable finite constant. Hence on making the choice (3.8) for £ we have

a1 \de| Jdg (e teatnlg]
I g ) Flaueg <4, g

1 This notation differs slightly from that of Olver (19775). Also, when g(z) is analytic at ¢ we have y, = 1,
and the estimates (4.4) and (4.7) are the same.

47-2
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Denote the arc parameter of 2, measured from ¢ = 0, by 7 and let 7,( < 0) and 7,( > 0) corres-
pond to e; and o, respectively. Then on 2

1<[r/8] < 4,
where the symbol 4 is now being used generically. Since |d{/dr| = 1, it follows that

A () A [
) o, | 712 @2\ 7(z)) &

= | — dT
Qurmg) = udm ), 1+ u|T|im
On transforming to the integration variable v = + u%*™r, we obtain

1 (71 +u2/m|7-| 1 wdlmy, whinl\ {4y
WJ;, 1+“|T|%md7_u‘m(fo +f0 )1+v%mdv— O (Xn), (4.11)

(4.10)

as u— o0, where ¥, is defined by (4.8).
Next, if g(z) is analytic at ¢, then |g(z) £ ~(z)| is bounded on #. By similar analysis we derive

1 [ |d¢]

d
== 8(2) zg(u2,m€)=0(xm). (4.12)

fi2)
Alternatively, assume that g(z) is singular at ¢. From (3.2) we have

ls(@2)| < dlz—d]=+ (2€2),

%)

and hence lg(2)] < 4|g]t (Le2).
Using this inequality we find that
1 ak g(z) dz qu A w?lmy, J'uz/mlr,} 14v . .
w1 g wates <wem(l, +), )rrmeras @

compare (4.11). For large z the right hand side is

O™ (0<m<2(1+y)), O@'lnu) (m=2(1+y)), O@™*™) (m>2(1+y)).
(4.14)
To complete the proof of part (i) of theorem 4.1 in the present circumstances, we combine
(4.10), (4.11), (4.13) and (4.14), and absorb all the error terms in the estimate O(y,,), where
¥, is given by (4.5) and (4.6). To prove part (ii) we combine (4.10), (4.11) and (4.12).

4.4. Conclusion of the proof of theorem 4.1

Suppose now that¢ e & and either g is at infinity, or |{| - 00 as z—a; along . We introduce an
arbitrary fixed point ¢; on 2 between a; and ¢. The analysis of §4.3 shows that u=>"77%, , (H) is
estimated by O(¥,,) or O(¥,,), according as the hypotheses of (i) or (ii) apply.

To estimate the contribution from the part of 2 lying between a; and d;, we use the expression
(4.8) for H, again with the choice (8.8) for 2. Since |{| is bounded away from zero on the part of
2 under consideration, we have

l€|%.(m—2) _ (u21m|§|)1}(m—2) 1 +u2/m|€| A

Q(uZ/mg) ym—2)fm 1+ (uzlmlgl)ﬁm = ym—2)im >

provided that «, also, is bounded away from zero. Hence

¢l s ()40 g

the last quantity being finite, by hypothesis.

A4

= ym—2)im %lj, a; (F) ’

(4.15)
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For the other term in (4.3), let &; be the {&-map of ;. Since |{| is bounded away from zero, we
may choose « so that #?™|¢| > 1 everywhere. Then
Ja’__d_g___ _fa"lj_’iz””_m dé <f&’§’f’_’”_|§_| dé

o | 822WmE)|  Joy 1+ull[im | 82| = Jo, wlg]im | £2
Since {~#™ is a multiple of 1/£(z) the last expression is finite, by hypothesis. On combining this
bound with (4.15) we conclude that

WS o (H) = O™)  (u=o0).
This estimate is absorbable in O(¢,,) or O(y¥,,); in consequence (4.4) and (4.7) again apply.

A similar proof holds when g, is at infinity or |{| - o0 as z—q,, along £.

Lastly, suppose that ¢ ¢ 2. Then we use the same proof as in the present subsection, except that
d; now denotes a point on the common boundary of D; and D,. Clearly in this case we have
the stronger result

4
Eu(z_m)lm%j,&j(g_%m) . (4' 1 6)

wmVyH) = 0(w™) (u—>0),
valid for all values of m.
This completes the proof of theorem 4.1.

4.5. Asymptotic estimates for domains

Sometimes we need an estimate for the error term of theorem 3.1 that is uniform for a region
rather than a single path. A typical result of this nature is as follows:

THEOREM 4.2. Assume the conditions of §§3.1 and 3.2 are satisfied, and that the functions f and g are
independent of u. Let a;, be a boundary point of D, (possibly at infinity) such that |&(ay)| = oo, and 0, and 0,
be constants such that —in < 0, < 0, < §n. Assume also that for every value of 0 in the closed interval
(04, 05] there is a path P, that has the equation

phé(z) =0 (4.17)

and lies in Dy. If Y oar ) >0 (z—>ay), (4.18)
where the variation is evaluated along P, then

u Y w(H) = 0(y,)  (u—>c0), (4.19)

again with the variation evaluated along P,. Furthermore, if (4.18) applies uniformly with respect to 0, then so
does (4.19).

It will be observed that the condition (4.17) ensures that &, is a progressive path. The proof of
theorem 4.2 is a straightforward extension of that of theorem 4.1, and it is unnecessary to include
details. The condition of uniform convergence, as applied to (4.18), could be eased to bounded
convergence (see, for example, Apostol 1957, p. 405), but this is unlikely to be important in
applications.

PART B. CONNECTION FORMULAE
5. MAIN CONNECTION THEOREM
5.1. Preliminary definitions

Throughout the present section we suppose that the conditions of §3.1 are satisfied. Before
stating the main result we reformulate the geometric concepts introduced in §§3.2 and 3.3 in
terms of a new variable £,(u, z), defined below, in order to avoid explicit reference to the variables
{(u, z) and £(u, z) in applications.
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The curves in the z-plane having the equation

Re j " ) di = 0 (5.1)

are called the principal curves associated with the transition point ¢c. Either branch of f#(u,¢) may be
used in this definition, provided that continuity is maintained. Whenm = 2, 3, 4, ..., there are m
distinct principal curves and they occupy the same Riemann sheet. For other values of m the
principal curves lie on two or more Riemann sheets. In all cases, however, adjacent principal
curves intersect at ¢ at an angle 2n/m. The theory of conformal mapping shows that a principal
curve can terminate only at ¢ or a boundary point of D, and also that no principal curve can
intersect itself or any other principal curve on the same Riemann sheet, except at ¢.

The principal curves are evidently boundaries of the principal regions introduced in §3.2, and
we note that each principal region includes its bounding principal curves. We shall suppose that in
each principal region there is a one-to-one relation between z and any continuous branch of the integral
f f*(u, z) dz. This is equivalent to the assumption of §3.2 that the mapping from D onto 4 is
one-to-one.

Starting with an arbitrarily designated principal region D,, we define Dy, D, ..., to be the
successive principal regions that are encountered as we pass around ¢ in the positive rotational
sense; similarly D_;, D_,, ..., denote the successive principal regions encountered in the negative
rotational sense. Whatever choice is adopted for D, the labelling can be made consistent with
that of §3.2 by appropriate choice of branch of f§™ in the expansion (8.5). We shall refer to
D;n D;,, and D;n D;_, as the lgft and right boundaries, respectively, of D;; compare §2.4.

Next, in each principal region D; we define

&,2) = [ Fiwo (5.2)

taking the branch that is continuous and has non-negative real part. This determines a function of z that is
continuous throughout D, except on the principal curves. Clearly £,(«, z) is positive imaginary
on the left boundary of D; and negative imaginary on the right boundary of D;. Since the left
boundary of D, is also the right boundary of D;,, and the right boundary of D; is also the
left boundary of D;_,, it is clear that §,(u, z) changes sign on crossing a principal curve.

In addition to the left and right boundaries, we also need to define the left, right and internal
parts of D;. These arc the point sets in D, that satisfy

0 < ph§(u,2z) <jm, —in <phé(sz) <0, [phé(y,z)| < o, (5.3)

respectively, where ¢ again denotes an arbitrary positive constant less than unity; compare again
§2.4.

The last concept is that of a progressive path. This is any Jordan arc 7 comprising a finite chain of
R, arcs, in the sense of Olver (1974, p. 147), and having the property that Re £,(«, z) is monotonic
on the intersection of & with any principal region. It needs to be clarified that this does not require
Re £, (u, z) to be monotonic along the whole of Z; Re £,(u, z) may be non-increasing in one princi-
pal region and non-decreasing in another.

It is easily verified that the definition just given is consistent with that of §3.3. Thus # can lie in
at most two principal regions D; and D, say. Furthermore, unless £—j = + 1, & has to pass
through ¢ in order to enter one principal region from the other. Typical progressive paths are
indicated in figure 5.
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4 i

Ficure 5. z-plane: progressive paths 2.

5.2. Statement of theorem

In this subsection we assume the conditions and notation of §5.1, and also that j and & are
integers satisfying condition (i) of § 3.3. We suppose that a; and g, are given points (other than )
in the closures of D; and D, respectively, including boundary points or points at infinity, and 2 is
a progressive path connecting a; and a;. We also suppose that 8 denotes a given number that is
independent of z (but may depend on ) and satisfies 0 < 8 < 1. Before stating the main theorem
in this section we introduce the following notations.

First,
A5(w) = (1+38)[1+Ofut,(u, 2;)}] - (5.4)
where 0(¢) is defined by (2.9).
Secondly,
X, (W) = 4;() {1 + T3] A7 % Ay, ey €720}, (5.5)

where the upper or lower sign is taken according as a; lies in the left or right part of D, A;
is defined by (2.17) and (2.18), and T} = 1 or 0 according as |£,(«, 4;)| is finite or infinite. Thus
when |£,(4,a;)| = o0 we have @{uk,(u,a;)} = 0 and X; ;(u) = 4;(u) = 8.

Lastly, when ze &

Ay (u, 2) = G {1+ X 1 (u) + T A5 5|45 (w) }exp {m=| A5 k| oy, 2™V o (H)} = 1], (5.6)

where C; ;, p;  and H = H(u, z) are defined by (2.38), (3.9) and (3.10), and the variation of H
is evaluated along Z.

THuEOREM 5.1, Let w(u, z) be a solution of (3.1) with the properties
SHu,2) w(u, z) ~ (147) emvéd9, (5.7)
O f4(u, z) w(u, 2)}/0z ~ — (1 +7") uf (u, z) e~ ' (5.8)

as z—>a; along P, where 1 and n* are independent of z and |y|, 9| < 8. Assume also that 1/£,(u, z) and
F(u, z) are each of bounded variation as z— a; or a;, along P, where F(u, z) is defined by (4.2). Then the
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analytic continuation of w(u, z) - obtained by passing around the neighbourhood of ¢ from D to D, in the same
sense as the sign of (k—j)— has the following properties:
(i) If ze Zn Dy, then
S, 2) w(u,2) = P97 g+ e (4, 2)} €169 0T, 4y Fepp(u, 2)} e 80, (5.9)
O fH(u, 2) w(u, 2)} [0z = 1+~I-1N; 1 + ey (u, 2) uf ¥ (u, z) €vke?)
+ ik—j{)(j,kﬂrl + 6!1:2(”) Z)} ufé(u: Z) eukl z), (5' 10)

where
lexa(n,2)],  |eka(u, 2)| < [1+Oubo(n, 2)}] [Ay,1(u, 2) + |4y 1 {1+ X 1 (@)}] = [Ase],  (5.11)
Ieiz(u’ Z)l, 16 I < [1 +@{u€c u,z }] [l/\a lc:i:ll{l +X' >}
+ Ty A;(u) | A7 e 2 )| ] — |A; gy,  (5.12)

the upper or lower signs being taken throughout according as z lies in the left or right part of D,
(ii) IfReg,(u,z) - o0 as z—a;, along P, then

S, 2) w(u, 2) ~ F71(Q; 4 +k,) €1Edwd), (5.13)
A, 2) w(u, 2)}/0z ~ P=T-Y(N; 1+ Ko )uf H(u, 2) evéetsd), (5.14)
as z—>ay, along P, where K, is independent of z and
|xo| < Ay (u, @) + |25, 5| X; 1(w). (5.15)
(iii) If 20 Dy, coincides with the left or right boundary of Dy, and |, (u, a;)| = oo, then
S, 2) w(u, 2) = FI1Q; g +Ky) 060D £T0-T(N, 11y +Ky,) e WD 4 o(1),  (5.16)
a{f%(u, z) w(u, z) }/az = uf%(u’ z) {ik—j_l(/\]', o FKyq) €462

FiFI(A) g +Kyp) 786D 4 0(1)}, (5.17)

as z - ay, along P, where k., and k..o, are independent of z and subject to the bounds
k] < Ay (s ar) + A 5] Xj0(w), (5.18)
|Ksa| < Ay 1(u @) +| A, par| X () +T; A5 (w) | A7} e~2ub 2| (5.19)

and the upper or lower signs are taken throughout according as a;, lies on the left or right boundary of D

In (5.9) to (5.17) fi(u, z) denotes the branch obtained by analytic continuation from that used in (5.7)
and (5.8) in the same manner as for w(u, z), and the branch of f*(u, z) is the same as that used in (5.2) in
constructing &,(u, z).

This theorem is proved in the next three subsections.

Remarks. (a) If a; lies in the intersection of the left and right parts of D, that s, if ph £,(4, ¢;) = 0,
then either ambiguous sign may be chosen in (5.5). Similarly, when ph £,(, z) = 0 either upper
or lower signs may be adopted throughout (5.9) to (5.12).

(b) Therelations (5.13) and (5.14) are valid whenever the right hand side of (5.15) is less than
|A; x| : this condition ensures that the factor A; ; +k, does not vanish.

5.3. Asymptotic forms of the solutions at boundary points of D

Theorem 5.1 applies only when there actually exists a solution w(«, z) with the properties (5.7)
and (5.8). If g; is an interior point of D, then f (u, a;), 1/f (4,a;) and £,(u, a;) are all finite, and
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from the theory of linear differential equations we know that w(u, z) exists whatever values are
assigned to 7 and #'. In other circumstances, however, w(u, z) may exist only when 9 = 9. This is
illustrated by the following result:

LemMA 5.1. Assume the conditions and nolation of §5.1 and let a; be a boundary point of D; or a point at
infinity in D;. Assume also that |&,(u, z)| 00 and V" (F) converges as z— a; along a given progressive path
P in D;. Then the differential equation (3.1) has a unique solution w;(u, z) that is holomorphic in D and has the
property

w;(u,z) ~ f~H(u, z) e=v&®a  (z->g;along P). (5.20)

Furthermore, o{ f*(u, z) w;(u, 2)}/0z ~ —uf}(u, z) e #&?  (z—>a;along P). (5.21)

The existence of w;(u, z) is an immediate consequence of theorem 11.1 of Olver (1974, ch. 6).
This theorem also shows that w,(u, z) has the property (5.21). Next, if Re §,(4, z) o0 as z— a;,
then w;(u, z) is a recessive solution and known to be unique.

It therefore remains to show that w;(«, z) is unique in the case when Re£,(x, z) is bounded as
z->a;. Because Re £,(u, z) is non-decreasing it must tend to a constant. Hence |Im £,(x, z)| - co.
Another deduction from theorem 11.1 of Olver (1974, ch. 6) is that there is a second solution
w;(u, z), say, such that

(1, 2) = f-Hu, 2) €591 +(u, 2)}, (5.22)

where |&(u,2)| < % |u Y H(u, z) 08;(u,2) /0z] < §, (5.23)

for all points on & that are sufficiently close to a;. On letting z—a; in the Wronskian relation for
JS(u,z) wi(u, z) and f*(u, z) @,(u, z) and using (5.20)—(5.23), we see that w;(u, z) and ¥;(u, z) are
linearly independent. Also,

SE(u, z) enbe 9, (u, z) = b1 +&;(u, z)}.

In consequence of thefirst of (5.23) and thefacts that Re £,(«, z) —a constant and [Im £,(u, z) | - oo,
the right hand side of the last relation cannot tend to a constant value as z— a; along Z. Hence the
solution w;(u, z) determined by (5.20) is unique, and the lemma is established.

5.4. Proof of theorem 5.1: determination of A and B

To prove theorem 5.1 we shall use the uniform approximation supplied by theorem 3.1, and
replace the functions U;(«*™{) and Uy, (u#™{) by their appropriate asymptotic representations for
large arguments. We must first show that the conditions of theorem 3.1 are satisfied; in particular
that the error-control function H (u, z) is of bounded variation along . On any compact segment
of Z that does not include g, or gy, this result follows immediately from the definition (3.10) and the
properties of the functions g(x, z), f (4, z) and 2(u2™¢) given in §§3.1 and 3.2. To show ¥ (H)
converges as z—> a; Or a;, we impose an extra condition on the balancing function, given by

Q(t) ~ v|t]iom-2 (5.24)

as ¢+ oo, uniformly with respect to ph ¢, where v is a positive constant, and use analysis similar to
that of § 4.4. We note, incidentally, that (3.7) is satisfied whenever (5.24) holds.

The remaining conditions of theorem 3.1 are easily verified. Hence the solution w(u, z) satis-
fying (5.7) and (5.8) can be expressed in the form (3.12). The first problem is to evaluate the
coefficients 4 and B. Considerable care will be needed in the choice of branches of the fractional
powers that occur in subsequent analysis.

48 Vol. 289. A.
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For brevity, we write temporarily
U;(£) = {2y (ung),  Uy(8) = DU (u2mg),  &(u, ) = (A De(n, ),  (5.25)

where in each equation the branch of {1m-2 is determined asin § 3, that is,

|{[m=2 exp {if(m— 2) ph £}
with ph{ in the interval [(2j— 1) n/m, (2/+ 1) n/m] when {e §;. Substituting in (3.12) by means
of (3.6), we find that ~ ~
(3m) ¥ 4(u, 2) w(v, 2) = AT;() + BUL(§) +2(w, §), (5.26)

where we may suppose the branch of f#(u, z) to be the same as on the left hand side of (5.7). We
shall also require the identity

d¢ 2 fi(u,z
S= -yl s, (5.27)
in which the branch of f}(x, z) is the same as that used in (5.2) in constructing £,(, z), and m-2
denotes the square of the branch of {i=2 in (5.25). Equation (5.27) is obtained by dividing the
equations

d&,/dz = fi(u,z), dE,/dL = (=)I hmE¥m—),

obtained from (3.3) and (5.2).

Let us again denote by a; the value of { corresponding to z = a;, and at first suppose that a; is
finite (and therefore, also, £,(u, 4;) is finite). If z—a; then ¥, ,(H)— 0, and from (3.13) it follows
that € (u,e;) = 0. Substituting in (5.26) by means of this result and referring to (5.7), we obtain

AUj(a;) + BU (o) = (3m)=(1 +7) e~ubelway,

Similarly, on differentiating (5.26) with the aid of (5.27) and comparing the result with (5.8) as
z—>a;, we find that

AU () + BU () = (=)= (3m) (1 + 1) uof =D e~ubcwa,
Solving the last two equations for 4 and B with the aid of the Wronskian relation
Uj(e;) Up(a;) = Up(e;) Uj(oy) = mie~Gtmmimp, U2/ Mo m=2)

obtained from (2.16) and (5.25), we arrive at

eG-+mi/m . o , .

= We"“@("’“ﬁ{(%m)—%(l +) @ U () + (= Y (3m) (1 + %) wTi(oy)},
ieU +hml/m (,a)) { (L) — 3e-m) [ i(1m)3 N U

= m,\j’kuz/me“m"’a” {@m) = (1 +9) U (o) + (=) (3m)2(1+7") uUj(0xy)}.

We now refer to (5.25) and substitute for U;(«;) and U}(a;) by means of (2.12) and (2.13), and
for Uy,(;) and U}, (;) by meansof (2.28), (2.24) and (2.25), with the symbols j and £ interchanged
in the case of the last three equations. This analysis yields

A = (ym)-Yi-deimimym-2ie@m) (1 4 1), (5.28)

B = (ym)—ti—i-tekrim) ;1 ym-2iemf (5.29)

where 4 = §(1+9) {140} (w30} -+ 3(1+91) {1 4800 (u2me))} = 1 F A7} Ay B, (5.30)
B = emmutdw )[}(1 4+ ) {1+ O (uima)} — J(1+ %) {1 +9(utmer,)}]. (5.31)

In (5.30) the upper or lower signs are taken according as a; lies in the left or right part of D;.
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Alternatively, assume that a; is infinite. Then £ (4, 4;) = 00 and from lemma 5.1 we know that
we must have 9! = 7. First, if Re £,(4, ;) = 4+ 0o then B = 0; compare remark (4) in §3.3. On
forming the ratio of the two sides of (5.26) and letting z->a; we find that (5.28) applies with 4 = 7.
Secondly, if Re£,(4, g;) is finite then Im £,(4,4;) must be infinite. By using similar analysis we
again conclude that B = 0 and 4 = 7. Since the terms 9;(u?ma,), 9}(u2ma,), 9y, (u¥ma;) and
9} 11(u¥™a;) all vanish when a; = o, these results show that (5.30) and (5.31) may be replaced by
their limiting forms as a;-> 0.

Bounds for 4 and B may be constructed from (5.30) and (5.31) by use of the hypotheses
7], |7*] < &8 and the bound for #;(u?m«;) and the other error terms obtained from (2.14). In this
way we derive

|(1 ) {1+ 9y (u¥mo)} = 1], [(14+97) {1+ Oy (¥mat)} = 1] < (148) {1+ O(uad™)}— 1,

and | (1 +7) {1+ 03 (umot;)} — (147 {1+ 95 (uPmay)}| < 2(1+8) {1+ O(uc}™)} - 2.
Hence, whether or not £,(, a;) be finite, we have
14| < X, (u), |B] < T; A;(u) | e—2uédap|, (5.32)

where 4;(u), X, ;(u) and T} are defined in §5.2.

5.5. Proof of theorem 5.1: conclusion

Theorem 3.1 shows that the representation (5.26) persists as z passes along & and approaches
ay. To evaluate the error bounds (3.13) we note that when v € 2 we have, from (2.29),

Q(umo) Ey(utms) My y(12mo) U (umo)| < (o) M u(um) < py
compare (3.9). If |£,(4, a;)| = oo then, as shown above, B = 0. Alternatively, if £,(u, a;) is finite
then we have

Q(utm) E7(u2m0) My (utm0)]| Uy i) e-3vtsns)|
< Q(u?my) M3 (utm™) E7 5 (u?m) B3 (umor;).

The right hand side is bounded by p; ;, because E; ;(¥*™) is non-decreasing on 2. Referring to
(3.14), (5.28) and (5.29) we deduce that

T11/Ps < (hm) im0 |1 4 7] + A7} esueceB])
and hence, with the aid of (5.32),

0,1/ Piyie < (hm) “hum=20EmL + X, 4 () + T3] A7 3| 4()},
this inequality holding whether or not £,(u, 4;) be finite. On substituting in (3.13) by means of
this result and referring to (2.37), (2.43), (5.6) and (5.25), we perceive that

(hm)b|em 9w, £)],  (3m)~hu?| e~vbewALhe-m (4, £)| < A; 1 (u, 2) [1+Ofub,(u, 2)}], (5.33)

valid when ze Zn D;, where we have denoted 02(u, {) /0§ by €' (u, {), for brevity.

The remaining step is to identify the representation (5.26), and its z-derivative, in the explicit
forms given by the theorem in cases (i), (ii) and (iii). In (5.26) we substitute for 4 and B by
meansof (5.28) and (5.29), and for U;({) and U,,({) by means of (5.25), (2.12), (2.23) and (2.24),
with the symbol j replaced by £ in the case of (2.12). This yields

S, 2) w(u, 2) = PFTI2(1+ D) [R5, €L+ ey (W)} £ 1Ay, gy €981+ O (u2mE)}]
+ik—-1BATY, e—ubdn (1 4 9 (u¥mE)} + (3m)E(,£), (5.34)
48-2
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the upper or lower signs being taken according as z lies in the left or right part of D,. Next, if we
differentiate (5.26) by use of (5.27), with the symbol j replaced by £, and use similar analysis we
arrive at

wf ~Hu,2) 8w, 2) wlu, 2)}/0z
= 1511 ) [y €560t By (W)} i,y €601+ O}
— kI e vk {1 4§ (12m)} + (- )out (3m) -REE-mE (u, ), (5.35)

with the same sign convention.

Case (i). We compare (5.9) and (5.34). Since there are two error terms in (5.9) there is a degree
of freedom in the identification. The actual choice does not appear to be critical from the stand-
point of applications. We shall adopt

€44 (4, z) = (dm)biTei+rle—utwad (u, £) 4 (1 4+ A) Ay, 1 {1 + Oy (W2ME)} — Ay 1 (5.36)
6x9(ty 2) = {(1+A) A gy FIBATEHL + 05, (w¥™E)} = Ay, i (5.37)
Similarly on comparing (5.10) and (5.35) we see that we can set
€L, 2) = (dm)—hik+i+iy—le—ubdwalb@=—mp (y &) 4 (1 +A) Ay 1 {1 + 9% 01 (@m0} — A1, (5.38)
eha(t,2) = {(1+4) Ay pan FIBATRY {1+ 92} = Ay, 1. - (5.39)
(

Case (ii). We divide (5.13) and (5.34) by e%®?), let z—a; and compare the results. Since
e~2ukwd) 9, (u2mf) and P4 (u2™¢) all vanish in these circumstances, we obtain

Ko = (4m)H—F++11im {e—vEw 9 (u, £)} + AN (5.40)

Z—=>ay

the existence of the limit on the right hand side being a consequence of theorem 12.1 of Olver
(1974, ch. 6). Another consequence of the same theorem is that (5.14) is implied by (5.13).

Case (iii). The analysis in this case is more complicated, because although it is evident from
(5.33) that 628 (y, ) is bounded in absolute value, this quantity does not tend to a limit as
z->a; along #. Bearing in mind that we have Re§,(4,z) = 0 when ze Zn D,, we proceed as
follows.

By applying lemma 5.1 with j = £ and £+ 1 in turn, we see that when z—a,; along & the
solution w(w, z) can be expressed in the forms (5.16) and (5.17) in which the terms «; and k.,
are independent of z. On comparing (5.16) with the limiting form of (5.34), we obtain

Ky €VED iy €06 4 0(1) = A{A; ; vbeltd £A, 4, €18}
+ BAG} et 4 (3m) ik 418 (1, £).
Let{¢,}),n = 1,2, 3, ... denote the infinite sequence of values of {on 2n S, for which the corre-
sponding values of £,(u, z) are given by
2u,(u,z) = +nmi,

the upper or lower sign being taken according as 2 coincides with the left or right boundary of
S} On letting {— a;, through the sequence {{,,}, we derive

Ky Ky = A<A3 5 £y 1) +B/\ + (=) (3m) 2%+ (u, §y,,) +0(1).
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Similarly on letting {— «, through the sequence {{,,_;}, we obtain
K T ikyy = Ay, F iy ar) = BATL 21( =) (3m)Hi o4 H18(u, Gy q) +0(1).
The last two equations may be solved for k,; and «,. In this way we find that
Kax = (=)"5(3m)H 1w, §o) +18(s, Eana)}+ ANy, 1 +0(1), (5.41)
Kso = (=) FAmEAIT (0, Gon) ~ (0 Gono)} + ANy ea FiBATE +0(1).  (5.42)

Equations (5.36) to (5.42) supply exact formulae for the wanted error terms in the approxi-
mations (5.9), (5.10), (5.13), (5.14), (5.16) and (5.17). The desired inequalities (5.11), (5.12),
(5.15), (5.18) and (5.19) immediately follow on substituting for the absolute values of ¥ (u?™{),
e (umE), Fppay (u™E) and 9%, 1 (u™¢) by means of their common bound O{ué, (1, z)} obtained from
(2.14), for 4 and B by means of (5.32), and for the terms involving values, or limiting values, of
€(u, £) and &’ (u, ) by means of (5.33). This completes the proof of theorem 5.1.

5.6. A special case

An important case of theorem 5.1 arises when both £,(«, ;) and £,(u, @;) are at infinity. Since
several simplifications then become available, we state the result as a separate theorem. This may
be compared with corresponding results for real variables given by Olver (19774, §4).

"THEOREM 5.2. Assume the conditions of theorem 5.1 and also that |€,(u, z)| — 00 as z->a; or a;, along P.
Then the solution of (3.1) defined by

w(u, z) ~ f~4(u, z) e 4k (z->q;along P), (5.43)

is unique. Furthermore if z—>a;, along P, then w(u,z) has the properties (5.13) and (5.14) when
Re&,(u,a) = oo, or the properties (5.16) and (5.17) when Re &,(u, a;,) = 0, where

P,
kol,  |kuals  |kaa] < Gj [CXP {WV.@(H)}_ 1] , (5.44)
provided that, when (5.13) and (5.14) hold, the right hand side of (5.44) is less than |A; ;|.

It may also be noted that by constructing a direct proof for this special case it is not difficult to
sharpen the bound (5.44) for |k,| (but not for |k, | or |ky,|) by replacing C; ; by (1+ A% ;)}; com-
pare (2.38).

6. ASYMPTOTIC FORMS OF THE CONNECTION THEOREM
6.1. Assumptions

By supposing that the functions fand g are independent of the parameter u, we may construct
asymptotic estimates of the error terms in theorem 5.1 for large values of u by application of
the results of §4. The results we shall obtain in the present section are analogous to those for real
variables given in Olver (19775, §2) but the method of proof is somewhat different.

We consider the equation

d2w/dz? = {u?f (z) +g(2)}w, (6.1)

in which ze D, again a bounded or unbounded open complex domain occupying one or more
Riemann sheets, and the functions f(z) and g(z) are independent of the positive parameter u. We
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suppose that (z—¢)2~™f(z) is holomorphic and non-vanishing in D, where ¢ is an interior point of
D and m is a positive constant. Also, g(z) is holomorphic in D, punctured at ¢, and

8(2) = Of(z—o)71}  (z—>0), (6.2)
where 7 is a positive constant.
Asin §5.1 we define

£(2) = ff%(t) a, (6.3)

taking the branch that has non-negative real part. We also adopt the other conditions and defini-
tions associated with theorem 5.1, with the specialization that the functions f(z) and g(z) are now
independent of «; for example,

"0 = [\ 7 i (f;(z)) ~figle (6.4

The following conventions were introduced in Olver (19776), and will be followed in this and
subsequent sections. First, the symbol o is used to signify that a given equation is valid, and also the
corresponding equation obtained by formal differentiation with respect to z ignoring the differentiation of all
O-terms. Secondly, whenever an O-term appears in an equation it is understood to be uniform with respect to all
values of z associated with that equation. Thirdly, the symbol x (u) denotes an arbitrary positive function of u

having the properties

x(@) >0, 1/x(u) = O(u) (u—>o0). (6.5)

Lastly, let ¢ and b be any two points on a path #. Then following Olver (1974, p. 121) we
denote the part of # that lies between a and & by (a, b) 5 or [a, 4] 5, according as @ and b are both
excluded or both included. Similarly for (e, 4], and [a, b) .

6.2. Connection theorem for paths

THEOREM 6.1. (i) Assume the conditions and notation of §6.1 and that j and k are integers satisfying
condition (i) of §3.3. Let &P be a progressive path lying in D; U Dy, and a;, b;, by, and a;, be points, in that order,
on P, none of which depends on u or coincides with c; furthermore, a; is in the closure of Dy, a;, is in the closure
of Dy, b;e D;and by € Dy T Assume also that both 1/£,(z) and F(z) are of bounded variation on (a;, b;] » and

[bys ar) 5, and that w(u, z) is a solution of the differential equation (6.1) having the properties
fHR)w(u,2) Z{L+0(x)}je 5@ (ze(a;b;]p), (6.6)
as u—> o0, and
e"Eft(z) w(u,z), f~3(z) e“6@d{ f(z) w(u, z)}/dz->non-zero finite limits, (6.7)

as z—>a; along 2.
Then on [by, ay,) » the analytic continuation of w(u, z) — oblained by passing around the neighbourhood of ¢
JSrom D; to D, in the same sense as the sign of (k—j)—is given by

w(u, z) = wr(u, 2), (6.8)
w(u, z) = wy,(u, 2) +wy,(4, 2), (6.9)
or w(u, z) = wy _y(u, z) +wg (4, 2), (6.10)

1 Thus a; and g, (but not b; and 4;,) may be boundary points of D, including the point at infinity.
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according as by, is interior to Dy, [by, ay) p coincides with the left boundary of D, or [by, ay) 4 coincides with
the right boundary of Dy. Here wi(u, z), wy 14(u, 2), wy,(u, z) and wg(u, z) are solutions of (6.1) having
the following asymptotic forms on [by, a;)» as u—> c0:

.fi (Z) Wy (u> Z)> ‘fi (Z) wI,l(u’ 2)3 .fi (Z) Wy, 1 (u> Z) (?) ik"j—l{)(f,k + O(Qm)} euﬁc(z), (6‘ 1 1)
SFH2) wi(u, 2) 5 A gy + O(Rn) €75, (6.12)
SFH2) wr (e, 2) 5~ FHAy g + O(R) } €762, (6.13)

In these relations A, is defined by (2.17) and (2.18), f}(z) denotes the branch obtained from that used in
(6.6) by analytic continuation in the same manner as_for w(u, z), and 8,, = Rm(¢) is defined by

R() = max {x(u), ¥n(u)}, (6.14)

where r,,, (u) is given by (4.5) and (4.6).
(i) If, in addition, g(z) is analytic at c, then in (6.11), (6.12) and (6.13) we may take

Rm(u) = max {x(u), Xu(¥)}, (6.15)
where x,,(u) is given by (4.8).
The proof of this theorem is given in the next subsection.

Remarks. (a) Although wy(u, z), wy 1 (4, z) and wy, _;(u, z) have the same asymptotic form (6.11),
they are distinct solutions of (6.1).

(b) The given conditions permit b; to coincide with a;, provided that 4, is not on the boundary
of D. In this event (a;, b;]51s to be interpreted simply as a;. Similarly for a; and 4.

(¢) The left boundary of D, is also the right boundary of D, ,. Consequently a simple con-
sistency check is furnished on replacing £ by £ + 1 in (6.10) and comparing the result with (6.9) by
means of (6.11), (6.12) and (6.13). Bearing in mind that £,(x,z) changes sign on crossing the
boundary, we perceive that consistency is maintained. Similarly for the right boundary of D,

When g(u, z) is analytic at z = ¢, another consistency check is furnished by taking m to be a
positive integer, other than unity, and replacing £ by £ + m. In effect, this describes a simple closed
circuit of ¢ once in the positive sense, and therefore changes f3(x, z) by the factor eim-2m, Using
this result we easily verify that the net effect is to leave (6.8) to (6.13) unchanged, as we expect,
since w;(u, z) is analytic at ¢ for these values of m.

(d) Inthevarious cases that arise when ¢ is real, f(z) is real on the real axis and m is an integer
exceeding unity, theorem 6.1 yields the same results as theorems 1, 2, 3 and 4 of Olver (19775).
This assertion is verifiable in a straightforward manner and details will not be included.

6.3. Proof of theorem 6.1

In consequence of the assumed conditions, equation (6.1) has a solution ®(u,z) with the
properties

fH2) d(u,2) G {1+ O(u™)}e&@  (z€(ay,b5]5), (6.16)
as ¥ —> o0, and
EOFH(z) Dluy2) > 1, fHz) WD fH(2) ib(u, 2)} /02> — 1, (6.17)

as z—a; along &; compare §§11 and 12 of Olver (1974, ch. 6). If we define
w(u, z) = {1+0(x)} D (y,2), (6.18)

where the term O(y) is independent of z, then w(«, z) is another solution of (6.1). On combining
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(6.16) and (6.18) and observing that in consequence of (6.5) O(u~') < O(x), we obtain (6.6) with
the term O(y) now depending on z. In other words, a solution w(u, z) having the properties (6.6)
and (6.7) certainly exists. This solution is obviously not unique, however, because of the freedom
of choice of the term O(y) in (6.18).

Next, it is easily verified that all the conditions of theorem 5.1 are satisfied. On comparing
(5.7) and (5.8) with (6.6) and (6.7) we see that we may set § = O(x) as u—oc0. In [by, ;)
the wanted solution w(y, z) is given by (5.9) and (5.10), and we now seek uniform asymptotic
estimates for the error terms in these representations when u is large.

From (5.4), (5.5) and the facts that

Ofut. ()} = O(™), [e &) <1,

we obtain 4;(u) = O(y) and X, ,(z) = O(x). If we assume the conditions of part (i) of theorem
6.1, then theorem 4.1 (i) is applicable; hence we have u=2m¥5,(H) = O(yr,,). Since V,’zj,z(H ) <

¥ »(H) when ze[b,, a;)», we deduce from (5.6) that A; ;(u, z) = O(y,) uniformly with respect to
z€[by, a,)». We also have O{ug,(z)} = O(x™?) in the same circumstances.

Substituting in the right hand sides of (5.11) and (5.12) by means of the estimates found in the
preceding paragraph, we conclude that

eil(u’z)a eil(u,z), €i2(u’z)> e:tz(u’z):O()?m) (ze[bk’ak)g’)a (6'19)

where 8, is defined by (6.14). The required results (6.11), (6.12) and (6.13) are obtained by com-
bining (5.9) and (5.10) with (6.19), and also, when 5, is interior to D,, absorbing the terms

F 1IN g Feua(u, 2) e HE@, FIRTI(Q, 40 4 €l 5 (1, 2) ) emHED

in the uniform error estimate O(g,,) e*®, since in this event Re £,(z) > Re&,(5;) > 0.

To complete the proof of part (i) of the theorem we have to show that the individual components
wy 1 (u, 2), wy,(4, 2), wy, (4, z) and wg(u, z) in (6.9) and (6.10) can be chosen in such a way that in
addition to possessing the asymptotic forms exhibited by (6.11) to (6.13) each is an exact solution
of (6.1). In the case of wy ,(u, z) and wy,(u, z) this is verifiable in the following way.

From L.G. theory we know that there exist independent solutions w_ («, z) and w_(x, z), say, of
(6.1) with the properties

FHR) w,(0,2) G {1+ 0N} ers,  fH(2)w_(u,2) 5 {1+ 0@ }e e,  (6.20)

when z€[b,, a;) »; compare (6.16). Let
@) w(u,2) = Af¥(2) w,(u,2) + BfH(2) w_(u, 2), (6.21)
where 4 and B are independent of z. To find these coefficients we substitute on the left hand side
by means of (6.9), (6.11) and (6.12), and on the right hand side by means of (6.20). This gives one
equation for 4 and B. A second equation is found in a similar way from the differentiated form of
(6.21). Solving the two equations, and recalling that |e**“| = 1 in the present circumstances,

we find that
A= P990 ,+ 0(R,)}, B = P9, a+O(£)): (6.22)

On combining these results with (6.20) we see that Af%(z) w, (u,z) and Bfi(z) w_(u, z) have the
properties (6.11) and (6.12) respectively, when z€[by, a;) .

A similar analysis may be constructed for wy _;(u, z) and wg(«, z). This concludes the proof of
part (i) of the theorem.
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To prove part (ii) we observe that if g(z) is analytic at ¢, then theorem 4.1 (ii) permits ¥, to
be replaced by y,, everywhere; in particular (6.15) may be used instead of (6.14).

6.4. Connection theorem for domains

Theorem 6.1 supplies the L.G. form of the solution w(u, z) when z is confined to a path. In some
applications we need asymptotic estimates for w(u, z) that are uniform in subregions of Dj.
To construct a result of this nature we adopt the conditions of theorem 6.1, but now suppose
that |£,(a;)| = o and in D, the path # = &, coincides with the curve having the equation
phé.(z) = 6, where # is a parameter in the closed interval [6,,60,]. Here 6, and 0, are
constants such that —}n < 6, < 0, < 7. In consequence, the point b, = 5,(6) depends on 6.
We assume that |£,{b,(0)}| is bounded and bounded away from zero, and also that

Y o F)=>0  (z—>a), (6.23)

2, ax

uniformly with respect to 6, where the variation is evaluated along .

THEOREM 6.2. With the assumptions of this subsection, the solution w(u, z) of (6.1) having the property
(6.6) has the following asymptotic form on [b;(0), a;) z,:

SH2) w(u, 2) FFTHA O (R)} €4 £ 1574 iy + O(Rn)} €759, (6.24)

as u—» o0, the upper or lower signs being taken throughout according as 6 > 0 or 0 < 0.7 Furthermore, the
O-terms are uniform with respect to 0 (as well as z).

This result is based on theorem 4.2, and the modifications to the proof of theorem 6.1 are quite
straightforward.

Remark. 1f, in addition, we restrict [b,(6), a;) », to an internal part of D}, (§5.1) then the contri-
bution of the whole of the second term on the right hand side of (6.24) is absorbable in the uniform
error estimate O(%,,) ¢“« included in the first term, because |e=2%4)| is exponentially and
uniformly small in these circumstances.

7. APPLICATION OF THE CONNECTION THEOREM
7.1. Classification of cases

Assume D to be a simply connected open domain that contains z transition points, and let the
L.G. approximation of a solution of the differential equation (6.1) be given at a point in the closure
of D, other than one of the transition points. Then the L.G. approximation of the same solution
at any other point, except a transition point, can be found by at most z applications of theorem
6.1. Or, if we require the L.G. approximation of the solution in any appropriate subregion of D,
then it suffices to make n— 1 or fewer applications of theorem 6.1, followed by one application of
theorem 6.2. The process is completely illustrated by the case in which D contains just two tran-
sition points ¢ and ¢, say, of multiplicities m — 2 and 1 — 2, respectively, m and 7 being arbitrary
positive numbers.

Asin §§5.1 and 6.1 we associate with ¢ the function

2
&) = [, (7.1)
[+
1 Again, either sign may be adopted when 6 = 0.

49 Vol. 28g. A.
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where the branch of the integral has non-negative real part and is continuous except where
Re£,(z) = 0. The last equation defines a set of curves emanating from ¢ which we shall call the
c-principal curves. In a similar way, if

() = [ o a (12)

with Re £(z) > 0, then the curves on which £4(z) is discontinuous, given by Re §;(z) = 0, will be
called the é-principal curves.
In the plane of the variable

£@) = [ i) dz, (1.3)

in which the integration constant is arbitrary and the branch is chosen in a continuous manner,
the ¢-principal curves and the é-principal curves are mapped as straight lines parallel to the
imaginary axis. The theory of conformal mapping shows that the ¢-principal curves intersect each
other on the same Riemann sheet only at ¢; similarly the é-principal curves intersect only at .
Nor may a ¢-principal curve intersect a é-principal curve on the same Riemann sheet. It is possible,
however, for ¢ and ¢ to be linked by a common principal curve; this occurs when the join of £(¢)
and £(¢) is parallel to the imaginary axis. The absence or presence of a common principal curve
gives rise to two distinct cases, which we designate I and II. They are discussed in turn in the next
two subsections. Further details will become clear from the examples treated in part C.

7.2. Case I: no common principal curve

Figure 6 indicates the disposition of the two sets of principal curves. We denote the region
bounded by four principal curves, two from each set, either by D, or D, depending whether
it is being associated with ¢ or ¢in the connection process. Starting from D, we enumerate the suc-
cessive regions bounded by adjacent ¢-principal curves as Dy, D, ..., or D_;, D_,, ..., depending
whether we are proceeding in the positive or negative sense around ¢. Similarly, starting from D,
we denote the successive regions bounded by adjacent é-principal curves by D;, D, ..., or D_,
D_,, ..., depending whether we are proceeding in the positive or negative sense around ¢. If m
is a positive integer exceeding unity, then there are m distinct regions D;. In other cases the D;
may be finite or infinite in number, and occupy two or more Riemann sheets. Similarly for

the D,—.

p, | b, (D) D,
£(2)
gle)
Ficure 6. Case I: z-plane. Ficure 7. Case I: &-plane.
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When j # 0 the regions D; and D, are principal regions in the sense of §5.1. But D, (or D)
comprises only part of a principal region associated with ¢ (or ¢). In the &-plane the maps of
D; and D; may extend over a half-plane when j # 0, but the map of D, (or D,) is confined to a
vertical strip; compare figure 7.

Let us assume that we are given the L.G. approximation (6.6) of a solution w(x, z) of (6.1),
where (a;, ;] is a segment of a progressive path Z in D, j being arbitrary. As special cases
(a;, b;]» may coincide with the left or right boundary of D;, or reduce to a single point in D, other
than a boundary point of D. Our problem is to construct the L.G. approximation of the same
solution on a segment [, d,) » of a progressive path £in D, where k is arbitrary. When j = 0 the
problem is immediately solvable by regarding D, as D, and passing from D, to D, by means of a
single application of theorem 6.1, with ¢ replaced by ¢ Similarly when £ = 0.

When j and £ are both non-zero we select an arbitrary point g, in the interior of D, that can be
joined to b; by an extension of Z that passes through ¢ and is progressive, that is, Re £,(z) is non-
increasing as z travels from g; to ¢ and non-decreasing as z travels from ¢ to 4,. The L.G. form of
w(u, z) at a, is found by applying theorem 6.1 with £ = 0, the relevant formulae being (6.8) and
(6.11).

To prepare for passage through the second transition point we compare (7.1) and (7.2).
Recalling that both Re £,(z) and Re §;(z) are non-negative, we see that

Eo(2) +85(2) = £.(0) = &5(e)  (z€Dy). (7.4)

Hence Re§,(z) is non-increasing on [¢, a,]p, which implies that this segment of P is also a progressive
path with respect to é. We now relabel a, as d, and extend £, still progressive, to pass through ¢ and
continue to d,. The aggregate path 2+ is indicated by the broken curve in figure 8. Using the

Ficure 8. Case I: z-plane. ——— progressive path.

L.G. form of w(u,z) that is available at 4, after passage through ¢, we replace e*&® by
euéd® e—uéda); compare (7.4). Theorem 6.1 is then applied, with ¢ replaced by # and j = 0, and
we select (6.8), (6.9) or (6.10), depending whether 4, is an interior point of D, [b;, d;,) » coincides
with the left boundary of D, or [4,, d),) » coincides with the right boundary of D,. The desired
L.G. form on [b;, ;)4 is then available from (6.11), (6.12) and (6.13).

7.3. Case II: common principal curve
Figure 9 indicates the disposition of the two sets of principal curves and the labelling of the
corresponding regions. There are now two regions D, (= D,) and D, (= D,) that have both ¢ and
49-2
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F1oure 9. Case II: z-plane. Ficure 10. Case II: £-plane.

¢ on their boundaries; furthermore each is a principal region in the sense of §5.1 with respect to
either transition point. Part of the mapping on the £-plane is indicated in figure 10. Again, our
problem is to connect the L.G. form (6.6) on a given segment (a;, b;]» of a progressive path & in
D,, with the L.G. form of the same solution on a segment [b;, d;)4 of a progressive path P2inD,,
for arbitrary values of j and £. Asin case I, when j or £ is zero or unity this problem can be solved
by a single application of theorem 6.1. We therefore exclude these cases in the remainder of this
subsection.

The essential difference from the previous case is that there is a change of sign in the relation
between £,(z) and &;(z): in place of (7.4) we now have

£:(2) —£4(2) = £,(6) = —&4(c) (zeDyorDy). (7.5)

In consequence, if we choose an arbitrary point a, in the interior of Dy and try to follow the method
of I, we encounter a difficulty as soon as we prepare for passage through the second transition
point. This is because e*6 is replaced by e%éd® euéé@, and the absence of a negative sign in the
argument of the last exponential function precludes a second application of theorem 6.1.

To overcome the difficulty, we place a, on the common principal curve linking ¢ and ¢, as
indicated in figure 11. Then [¢, a,]» coincides with this principal curve, and the L.G. form of

Ficure 11. Case II: z-plane. ——— progressive path.
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w(u, z) at a,is given by (6.9), (6.11) and (6.12) with £ = 0. To prepare for passage through ¢, we
observe that D, = D,. Consequently we relabel , as d;, and extend &, still progressive, to pass
through ¢ and continue along the common principal curve until ; is reached. The aggregate
path & + 2 is indicated by the broken curve in figure 11. In the L.G. form of w(u, z) at 4, found
by passage through ¢, there are now two terms wy (%, z) and wy,(u, z). The contribution from
wy, (4, z) to the L.G. form on [, d;) is obtained by replacing e="4@ by e~&(@ -4 and applying
theorem 6.1, with ¢ replaced by ¢ and j = 1. To handle the contribution from wy ;(u, z), the key
step is to regard a, as a member of D, and relabel it d,. Since this entails crossing a principal
curve, £4(z) is replaced by —£4(z). Thus e*® becomes e*® e~u£d), where ¢ is regarded as a
member of D, in calculating £.(¢) (so that £,(¢) is positive imaginary), and z is regarded as a
member of D,. The contribution from wy ,(,2) to the L.G. form on [b,, 4,)4 is then found by
applying theorem 6.1, with ¢ replaced by ¢ and j = 0.

7.4. Remarks on cases I and 11

(a) Instead of using theorem 6.1 for passage through ¢ in cases I and II, we may use theorem
6.2. This modification will yield a subregion (in place of curves) in D, in which the L.G. approxi-
mation is uniformly valid for large u.

(b) If, in case I, £ = + 1 and £ lies in an internal part of D, then it may be possible to link
(a;,b;] to [by, )5 by a path in D; UD, U D, that does not intersect ¢ and is progressive with
respect to ¢ along its entire length. (For £ = — 1 this can be seen from the §-map depicted in
figure 7). In this event a single application of theorem 6.1 suffices to trace the L.G. forms from
(a3, 5515 to [bys di) -

(¢) When both transition points are of fractional multiplicity, it may happen that they are
joined by a common principal curve on one Riemann sheet but not on others. In this event either
the method of case I or that of case I may be employed (though the former is, of course, somewhat
simpler).

PART C. EXAMPLES
8. EXAMPLE 1: FOUR REAL TURNING POINTS OF DIFFERING MULTIPLICITIES
8.1. Topology of the principal regions

Each of the six examples treated in § 5 of Olver (19776) can be solved by the methods of the
present paper in all cases in which the coefficients in the differential equation are analytic func-
tions of the independent variable. For the purpose of illustration we consider a special case of the
fifth example. With a slight change of notation, this is given by

d*w/dz? = u*f (z) w, (8.1)
where S(2) = (z—c)*(z—0c3) (2= 3)*(z—¢4)?, (8.2)

¢y, €9, €3 and ¢, being real constants such that ¢, < ¢, < ¢3 < ¢,. Thus there are turning points of
multiplicities 2, 1, 4 and 3 at ¢, ¢,, ¢5 and ¢4, respectively. The problem is to calculate the eigen-
values of the system for the interval (— oo, 00), that is, the values of u for which equation (8.1)
admits a non-trivial solution that is recessive as z—> + 0.

The numbers of principal curves that emerge from ¢, ¢,, ¢; and ¢, are 4, 3, 6 and 5, respectively.
Their configurationis indicated in figure 12, only one Riemann sheet being necessary. The points
¢; and ¢3 are joined by a common principal curve along the real axis, as are ¢; and ¢,. As |z| >0
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the asymptotic form of the function £(z) defined by (7.3) and (8.2) is given by §(z) ~ +§25.
Hence the principal curves approach the point at infinity in the 12 directions specified by
phz=&2s+1)n (s=0,1,...,11).

Of the 14 curves that pass to infinity, one pair from ¢, and ¢, share the asymptotic direction §n
and another (conjugate) pair from the same points share the asymptotic direction .

Ficure 12, Example 1: z-plane.

The 16 principal curves divide the z-plane into 13 closed domains. Those with ¢; on the bound-
ary are labelled D, ,, D, 4, D, , and D, ; in the positive rotational sense; those with ¢, on the
boundary are labelled D, ¢, D, ; and D, ,, and so on. These notations overlap; as indicated on the
diagram D, , = D, ,, and so on. The §-map of each domain is a half-plane, except that of D, ,,
which is a vertical strip.

8.2. Construction of the connection formula

Let a,, a,, a;, ay and ay be arbitrarily chosen fixed points on the real axis such that
—00 <A <€ <y <Cy<ly<C3<by<cy<a;< 0.

By L.G. theory, all solutions of (8.1) that are recessive as z— — co are multiples of the solution
w(u, z) that is real on the real axis and has the properties

SHz) w(u,2) 5 {1+ 0@ ™)}e @ (z€(-00,a,])
as y > oo, and f%(z) w(u’ z) ~ e, ()

as z—> — 0. The choice of branch of f1(z) in these relations is immaterial, as long as it is con-
tinuous. The L.G. form of this solution at @, is immediately found by applying theorem 6.1 with
c=¢, xX(u) =u,j=0,k=2and m = 4. From (6.8) and (6.11), we obtain

FH2) w(u, 2) 7 2h{1 4+ 0(x)} e (2 = a3).

To prepare for passage through ¢,, we follow the method of § 7, case I and substitute in the last
equation by means of the identity

gc;(z) = gcl(cz) - §Cz(z) (zeD2,0(E D1,2))>
to obtain Ay () fH(2) w(u, 2) 7 {1+ O(xa)} @ (2 =ay),

where Ay (u) = — 274 e—ube,(e),
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At this stage we regard a; as belonging to the left boundary of D, ,, and therefore apply theorem
6.1 with ¢ = ¢y, ¥ = X4 J = 0, k = 1 and m = 3. Recalling that O(y;) < O(¥,), we obtain from
(6.9), (6.11) and (6.12)

4,(w) f4(2) w(u, 2) 5 {1+ O(Xa)} €59 +i{1 + O(xg)} e 4@  (z = a4(€ Dy,y)).
To prepare for passage through ¢;, we follow the method of § 7, case IT and use the identity

&,(2) = &,,(c3) + g%(z) (zeDy )
compare (7.5). Substitution in the preceding relation produces
A,(u) f4(2) w(n, 2) 5 A3 (w) {1+ O(x)} 6@ +1d57 (u) {1 + O(xa)} =@ (z = ay(€Dy,1),

(8.3)
where Ay(u) = e¥bel,  Ayl(u) = e %l (¢zeDy ;). (8.4)

Again, at this stage we regard a, as belonging to the left boundary of D; ,. The contribution from
the second term on the right hand side of (8.3) is found by applying theorem 6.1 with ¢ = ¢,
X = XaJ = 0,k = 2andm = 6. From (6.9), (6.11) and (6.12) this contribution is calculated to be

14y (u) [3H{1 + O(e)} €459 — 2{1 + O(xg) } e ™*4u] (2 = ay(€ Dy o). (8.5)

To trace the contribution of the first term on the right hand side of (8.3), the method of § 7, case I1
requires us to regard a; as a left boundary point of D ;. This replaces e%6«® by e~%£:,®, We then
apply theorem 6.1 with ¢ = ¢3, ¥ = X4,/ = 5,k = 2 and m = 6. From (6.9), (6.11) and (6.12) the
contribution is found to be

Ay(u) [ — 2{1 + O(x6)} €5 — Bi{1 + O(xg)} 5] (2 = a4(€ Dy ,)). (8.6)

Because £, (c;) is purely imaginary it follows from (8.4) that |4,(u)| = 1. Hence the result of
combining (8.5) and (8.6) is expressible in the form

Ay (u) f1(z) w(u, 2) 75 {As(w) + O(x6)} €"5® + {Ay(u) + O(Xe)} €0 (2 = ay(€ Dy 5)),
where Ag(u) = — 34451 (u) — 245(u),  Ay(u) = — 2457 (u) — 3¥idy(u). (8.7)

We pass through the remaining turning point ¢, in a similar manner to ¢;. This calculation is
slightly easier, because (6.8) is used in place of (6.9). The result is found to be

Ay(u) fH(z) w(u, 2) 75— 2 cos (3n) [{Ag(u) + O )} e~beed
+i{dy(u) + O(xs)} céa] etbe®  (z€[as,0)),
where £, (¢,) is calculated on the assumption that ¢,€ Dy ,.

8.3. Determination of the eigenvalues

The condition that w(u, z) be recessive as z— + co is that the content of the square brackets in
the last equation is zero. (Compare the first footnote on page 689 of Olver 19775.) Since |e*%Ea(s)|
is unity and yg = u~%, we find that

Ay(u) e¥éee —i4,(u) e~éeed = O (u~¥). (8.8)

To express the last equation in real form, we have by definition £,(¢c;) = ip, & (¢,) = io, where

- ["1r0pay o= ["1r@pa
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On referring to (8.4) and (8.7), we find that (8.8) reduces to

3t cos{(o—p)u} +2cos{(o+p)u} = O(u}),
or, equivalently, cos [ou +arctan {tan2({%n) tan (pu)}] = O(u~%). (8.9)
Therefore ou+arctan {tan?(;%=) tan (pu)} = (n+§) n+ O(u%), (8.10)

where 7 is an arbitrary integer. After making appropriate notational changes we see that the last
equation is the same as (5.29) of Olver (19775), and the rest of the analysis proceeds as in this
reference.

9. EXAMPLE 2: THREE TRIPLE TURNING POINTS ON THE UNIT CIRCLE
9.1. Topology of the principal regions

In this section we consider the differential equation (8.1) with

f(2) = (-1)%. (9.1)

The transition points are turning points of third order, situated at 1, @ and 1/w, where w = €i™.
Five principal curves emerge from each turning point, the phases of their initial directions being
$(2s+ 1)m, s being an integer. One of these curves is the real interval ( — oo, 1]. The configuration
of the others is indicated in figure 13, only one Riemann sheet being necessary.

7
bog ;{ D,, (Dl,"
0

'/ D, \

Ficure 13. Example 2: z-plane. ——- progressive path Z.

With £(z) defined by (7.3) and (9.1), we have §(z) ~ +%2% as |z| —o0. Hence the principal
curves approach the point at infinity in the 11 directions given by

phz = @s+1)n (s=0,1,...,10).

Two curves, one from 1 and one from , share the asymptotic direction 2m; similarly two
curves from 1 and 1/w share the asymptotic direction +2n. Three curves, one from each turning
point, approach infinity in the direction .

The enumeration of the 13 closed domains bounded by the principal curves is done in a similar
manner to that of example 1; the actual labelling we employ is indicated in figure 13. Each
domain is mapped on the £-plane as a half-plane, except D, , (= D, ) and D, 3 (= D3 ), which
are mapped as vertical strips.
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9.2. Construction of the connection formulae

Although there are three turning points in this example, at most two connections are needed to
trace the L.G. forms of any given solution from one domain to another. For example, let us con-
sider a solution that is recessive at infinity in Dy ,. A single application of theorem 6.1 (or theorem
6.2) with ¢ = 1/w enables the L.G. form of this solution to be found in each of the following
domains: Dy o, Dy 1, Dy 3, D3 4, the left part of D, 4, the right parts of D, , and D, ;, and a part of
D, . Toreach D, ,, D, ; and the remaining parts of D, ,and D, , two connections are needed, one
via 1/ to an interior point of Dy ,, then one via 1. Similarly two connections suffice to reach
D, 5, D, s and the remaining parts of D, ; and D, 4, one via 1/w to an interior point of Dy o U Dy ,
then one via w.

For illustration, we consider in detail the problem of tracing the L.G. forms from Dj , to D, ;.
By considering the £&-map it is easily seen that a doubly infinite path £ can be found in the union
of Dy ,, D3 , D, , and any internal part of D, , that is progressive with respect to the turning point
at 1/w along its entire length. This path is indicated by the broken curve in figure 13. Let 4, , and
a, ;1 be the points at infinity on £ in Dy , and D, ,, respectively, and by 5, b5 o and b, ; be points on
Z in the interiors of Dy 5, D, , and D, 4, respectively. By L.G. theory, any solution of the differ-
ential equation that is recessive as z—>00 in Dy , is a multiple of the solution w(u, z) having the
properties

f’jf(z) w(u, Z) _(_5_5{1 + 0<u—1)}e—u‘§1/w(z) (ZE (43, 25 b3, 2].@)} (92>

as u->00, and fH2) w(u, z) ~ e~bue@

as z->ay , along Z. Any continuous branch of f#(z) may be adopted in these relations. To find the
asymptotic form of w(u, z) on [b, ;, a5 1) 7, we apply theorem 6.1 with ¢ = 1/w, (1) = 4,5 = 2,
k = 0and m = 5. From (6.8) and (6.11) we obtain

SH(z) w(u, z) 5 2i cos (3n) {1 + O(ue*ua@t)}  (z€[by1, 51)5)- (9.3)

Because £ —j is negative, it also follows from theorem 6.1 that the branch of f(z) in (9.3) is
obtained from that used in (9.2) by continuous passage along &, skirting 1/w in the clockwise
sense. Had we enumerated the domains having 1/w on their boundary in a different manner, we
could have taken £ —j = 3. In place of (9.3) we would then obtain

@) w(u, 2) 75— 2 cos (3n) {1+ O(u )} e éure®  (z€[by1,84,1)5), (9.4)

where the continuation of f4(z) is now achieved by skirting 1/w in the anticlockwise sense. That
(9.3) and (9.4) are consistent is easily seen from the fact that on completion of a simple closed
circuit of 1/w in the positive sense the solution w(u, z) is unaffected, but because f(z) has a triple
zero at 1 /o the branch of f1(z) is changed by the factor e¥™.

9.3. Extension to domains

Suppose now that instead of tracing the L.G. form of the solution w(, z), defined by (9.2), from
one path segment to another, we seck asymptotic approximations of w(u, z) for large u that are
uniform with respect to z in the intersection of D, ; with the annulus A, defined by |z—w| > 7,
where 7 is an arbitrary small positive constant. We first construct the L.G. approximation to
w(u, z) at the interior point b, , of D, , by passage along & through 1/w. The result is evidently
given by (9.3) with z = b, ,. To prepare for passage through w, we use the identity

E1u(2) = Eyo(0) = §,(2)  (2€Dy 4 U Dy y);

50 Vol. 289. A.


http://rsta.royalsocietypublishing.org/

'\
A\
=%
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

y \

Py

THE ROYAL A

A A

N

0\

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

542 F. W.J. OLVER

compare (7.4). We take a new progressive path with respect to w that begins at b, o, passes through
w and continues in D, , along the curve having the equation ph§,(z) = 6, where 0 is a parameter
in the closed interval [ — }m, 3n]. (This path is not indicated in figure 13.) Theorem 6.2 is applied
with¢ = o, y(u) = ut,j = 0, k = 1 and m = 5. Using (6.24), with lower signs, we obtain?

FE(z2) w(u, z) T 2icos (§m) {1+ O (u%)} ebue(@ tutu(@ (9.5)
as u— o0, uniformly in the intersection of A, and the right part of D, ;. Similarly from (6.24), with
upper signs, we obtain

fHz) w(y, 2) &5 — 2icos (4m){1 + O (u=%)} evéuc@tube® 4 4 cos? (An) {1 + O (ut)} e¥brul@)—uéu@
9.6
as u —> 00, uniformly in the intersection of A, and the left part of D, ;. (5:6)

In both (9.5) and (9.6) the branch of fi(z) is obtained from that used in (9.2) by continuous
change from (ay 5, b3 5] to D, 4 passing the branch-points 1/w and 1 on the right, and w on the
left.

The regions of validity that we have quoted for (9.5) and (9.6) are not maximal. For example,
we may pass from b, , into D, , by using theorem 6.2 with¢ = w,j = 0,k = 2and m = 5. We then
find (9.6) is also uniformly valid in the intersection of A, and the right part of D, ,, provided that
£,(z) is replaced by —§,(z) at both occurrences (because §,(z) changes sign on crossing the
boundary Dy ;N Dy ).

10. EXAMPLE 3: TWO FRACTIONAL TRANSITION POINTS AND TWO SIMPLE POLES
10.1. Formulation of the problems
The final example is furnished by the differential equation (8.1) with

S(2) = (22+ 1)}/ (22~ a), (10.1)
a and g being positive constants. Thus f(z) has simple poles at + «, and branch-points at +if.
From our standpoint we regard + o as fractional transition points of order —1, and *if as
fractional transition points of order }. Taking the branch of f(z) that is positive in the interval
(, 00), we know from L.G. theory that there is a unique solution w(x, z) of the differential equa-
tion with the property .
w(u, z) ~ zte=24*  (z—>+00), (10.2)
the branches of z% and z* both being real and positive. The problems that we set ourselves are to
find the asymptotic behaviour of w(u, z) as z——co in the following cases:

(a) w(u, z)is continued from z = + 0o along the positive real axis until the neighbourhood of « is
reached. We then make p + 1 circuits of «, arriving at a point in the interval ( — «, ). We continue
along the real axis until the neighbourhood of — a is reached and then make ¢ + § circuits of —a,
arriving at a point in the interval (— oo, —a). Finally w(x, 2) is continued along the negative real
axis until — cois approached. The integers p and ¢ may have any values, positive, zero or negative.

(b) This begins as in problem (a), but on reaching the origin we make a detour along the
positive imaginary axis, encircle if once in the positive sense and return to the origin along the
positive imaginary axis. The rest of the journey, from 0 to — oo, is completed as in (a).

(¢) This begins as in problem (), but on returning to the origin after passing around if we
continue along the negative imaginary axis, encircle —if once in the positive sense and return to

t In (6.24) the term A, ,_, disappears, and the error term O(u~%) e~*0' is absorbable in the other error term.
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the origin along the negative imaginary axis. The rest of the journey, from 0 to — 0o, is completed
asin (a).

These are not the only continuations from + oo to — oo that are possible around the four singu-
larities, but they suffice for the purpose of illustration. It should be noted, however, that because
all solutions of the differential equation are expansible in convergent series of ascending powers of
(z—ip)¥ in the neighbourhood of i3, the effect of making any even number of circuits around this
point is to leave w(u, z) unchanged, and the effect of making any odd number of circuits is the
same as making a single circuit. Similarly for circuits around —ig.

10.2. Topology of the principal regions

The statements in the following three paragraphs are easily verified by means of conformal
mapping on the plane of the function £(z) defined by (7.3) and (10.1).

Five principal curves emerge from i4. They occupy two Riemann sheets, and the phases of their
initial directions are %(8s—9) n, s = 1,2, 3,4, 5. The first of these curves lies in the first and
fourth quadrants, is symmetric with respect to the real axis and terminatesat —if. The curve for
s = 21s confined to the second quadrant and tends to infinity asymptotically as a parabolic arc,
with axis along the real axis. The curve for s = 3 is the segment of the imaginary axis from if to
—if. For s = 4 and 5 the curves are the reflections in the imaginary axis of those for s = 2and 1,
respectively.

Five principal curves emerge from —if. They are the complex conjugates of those emerging
fromip.

Associated with « there is an infinity of Riemann sheets, and only one principal curve lies on
each. If we are using the branch of f (z) for which (22— «2) f(2) is positive on the real axis, then the
principal curve is the interval [ — a, a]. On the other hand, when (22— «?) f(z) is negative on the
real axis, the principal curve is the interval [«, 00). Similarly for the transition point — c.

The complete set of principal curves is indicated by the straight lines and curves sketched in
figures 14, 15 and 16. Associated with the transition point if there are five closed domains
bounded by principal curves emanating from all four transition points. They are labelled D, ,,
D, ,,D,, D, ;and D, ,onproceeding in the anticlockwise sense, and they occupy two Riemann
sheets. When associated with —iff the same domains are relabelled D, o, Dy 4, Dy 5, Dy 5, Dy 3, as
indicated in the diagrams.

Ficure 14. Example 3: Ficure 15. Example 3: Ficure 16. Example 3:
z-plane (i). z-plane (ii). z-plane (iii).

50-2
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The boundaries of D , (or D, ;) arc the two principal curves that join i and —if, and the
interval [ —a, &]. Thus D, , is multiply connected, and continuous passage around any closed
contour in D, , that contains the interval [ — a, ] in its interior alters the value of each solution of
the differential equation and also the value of the function £(z), defined by (7.3) and (10.1). If we
permit any number of such circuits, then the map of D, , on the £-plane is a vertical strip. The
other domains are simply connected. The &-maps of D, ; and D, 4 are half-planes, and those of
D, , and D, , are vertical strips.

10.3. Problem (a)

Let 4, ; and b, 4 be arbitrary fixed points on the real axis such that ; ; > «and b; , < —o; see
figures 14 and 16. From L.G. theory there is a solution ®¥(%, z) of the differential equation with
the properties

fHz2) d(u, z) ~ euke® (10.3)
as z— + o0, and
@) b, 2) F{L+ 0™} e 5@ (ze[by,,,00)) (10.4)
asu—>o00. The branch of f2(z) is taken to be real and positive in bothrelations. From (10.1) and the
definition of £,(z), given by (7.1) with ¢ = «, we see that

£.(2) =224k +0(z %) (2> +00),
where « is the real constant defined by
_ (@ pE 1 ., v
= f“ {m—t% di—2as. (10.5)

On comparing (10.2) and (10.3), we see that the relation of (x, z) to the wanted solution w(x, z)
is given by
w(u, z) = e*d(u, z). (10.6)
Let us continue o (, z) from [, 4, o) to the point 0+ 0i on the upper side of the principal curve
joining o and — o, making p circuits of « en route but not encircling any of the other transition points.
In applying theorem 6.1 we take the progressive path & along the positive real axis, ¢ = a,
x(u) = ul, k—j = p and m = 1. Because 0+ 0i is a left boundary point when viewed from «, the
appropriate formulae are (6.9), (6.11) and (6.12). Referring to (2.18) and (4.8), we find that

SHz) d(u, 2) Firp{L+ O ™)}e @ +iP(p+1) {1+ 0w )e @ (2 =0+00).  (10.7)

To prepare for passage around — o we observe that if z tends to —a along the upper side of the
interval [ — a, «], then £,(z) tends to 2ip where p is the positive real constant defined by

[ B a|ﬂ2+t2l7}
p= fo |fHE) di ~f0 lo® — 2[4

compare §5.1. We therefore recast (10.7) in the form

FH(2) (u, 2) 5 72p Bt + O(u1)} €8+ (p+ 1) e=80u{1 + O(u)p e~

di; (10.8)

(10.9)
again with z = 0+ 0i; compare (7.5). After completing ¢+ % circuits of —a and arriving in the
interval (— o0, b; 4] (figure 16), we calculate the contribution from the second term on the right
hand side of (10.9) by applying theorem 6.1 with ¢ = —«, y(u) = v, k—j = ¢ and m = 1. This

yields
i?(p+1) e2ruil=ag{l + O(u~1)} e¥é—a, (10.10)
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To handle the contribution of the first term on the right hand side of (10.9), we proceed as in
§7, case II and cross the principal curve joining o and — e, passing from 0+ 0i to 0 — 0i. This
replaces £_,(z) by —&_,(z), and also takes us into another principal region associated with — .
Accordingly, theorem 6.1 is now applied with j = —1, 4 = g and m = 1. This yields

i=Ppedrti=a(g 4 1) {1+ O(u~1)} e%é—old, (10.11)
Combining (10.10) and (10.11) we obtain
@) d(u, 2) FitP=o{(p+ 1)g e+ p(g + 1) €2+ O(u™)} e (z€(—00,by,,]).
(10.12)
The theory of the L.G. approximation shows that when the positive branch of f(z) is used in the
interval (—oo, —a), the wanted solution w(x, z) is expressible in the form
w(u, z) = A(u) ||t 21 + O(z-8)} + B(u) | 2|} e24s{1 + O(z-1)} (10.13)

as z—>— o0, where 4(«) and B(u) are independent of z. The coeflicient B(x) of the recessive com-
ponent cannot be found by the present analysis, but 4(«) can be estimated for large « as follows.
From the definition (7.1) of §_,(z), we calculate that

£ .(2) =2z) +k+0(z}) (z>—00), (10.14)

where « is defined by (10.5). Next, because f(z) has simple poles at + «, the branch of f%(z)
used in (10.12) is given by

e—;}(zp-l-l)ﬂi—-;}(2q+1)1fil 224 ﬁzlﬂ 22 —a?| -1, (10.15)

and is therefore asymptotic to i-#=¢-1|z|~t as z—+ — co. Substituting these estimates in (10.12) and
comparing the result with (10.6) and (10.13), we see that

A(W) = = e(p+ 1) et plg + 1) €¥ov 4 O (1016
compare theorem 3.1 of Olver (1974, ch. 6). This is the required result.

10.4. Problem (b)

We follow the analysis of §10.3 until we reach (10.6). Instead of continuing ®(u,z) from
[by,1, 00) to 04 0i, we continue this solution to a point 4, o in D, , on the join of 0 and if; see
figure 14. By applying theorem 6.1, using (6.8) and (6.11), we obtain

S(2) (u, 2) 7 P2p{1+ O(u )} e (2 = by); (10.17)
compare (10.7).
To prepare for passage around i, we note that when if is regarded as a member of D, , we
have £,(if) = o +ip, where p is defined by (10.8) and o is the positive real constant given by
ip A ’ pr—12 | $
= 3 =21
o fo | f3(2) de| fo |a2+t2|%dt. (10.18)
Equation (10.17) is therefore recast in the form
SHE) (1, 2) 5,1-2p o1 + O} e 560 (z = by ,); (10.19)

compare (7.4). We now continue #(u,z) to an interior point 4, , of D, ,; see figure 15. This
continuation is achieved by applying theorem 6.1 with¢ = i8, ¥(u) = u™, j = 0,k = 2and m = .
From (6.8) and (6.11) we obtain

SH(z) d(u, 2) ;2 cos (3m) 22p e HAU1 4 O(u 1)} 6@ (2 = by ).
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To prepare for passage around — « we note that when —a is regarded as a member of D, , we
have §;4(—a) = p+io, where p and o are defined by (10.8) and (10.18). Accordingly, we recast
the last equation in the form

SH(z) (u, 2) 5 2 cos (§m) i2-2p e WUl + O(u )} e = (2 = by o);

compare (7.4). Theorem 6.1 is now applied with ¢ = —a, y(#) =4, k—j = gand m = 1. From
(6.9), (6.11) and (6.12), we obtain
fi(z) d(u, z) 7 2 cos (m) i*-Pp et ufj1-ag(1 4 O(u~1)} %o
(g +1) {1+ 0™} e e (z€(~00,by,]), (10.20)

where b, , is an arbitrary fixed point of the interval (— oo, —a); see figure 15.
The theory of the L.G. approximation shows that when the negative branch of f(z) is used in
the interval (— oo, — o) the wanted solution w(u, z) is expressible in the form

w(u, z) = Ay (u) |z {1 + O (z- 1)} + 4y(u) | 2|t e-2e{1 + O (2 1)} (10.21)
as z—>— o0, where 4, (1) and 4,(u) are independent of z. In the present circumstances we have
£ (2) = 2zl +ik+0(z ) (z->—c0);

compare (10.14). Also, the appropriate branch of fi(z) is et™ times the expression (10.15);
accordingly

fi(z) ~ e tmiv=z|~t  (z>—00).
On substituting these estimates in (10.20) and comparing the result with (10.6) and (10.21), we
conclude that

A =2 2 =1 a(p+o+x) A+ uf { -1
(1) = 2cos () pgeimie {1+ 0@}, } (10.22)

5
Ay(u) = —2cos (31) p(g+ 1) ef™ el ued-Dul1 4 Q(u-1)}.

This is the required result.
10.5. Problem (c)

The analysis in this case is similar to that of §§10.3 and 10.4 and it suffices to sketch the main
steps and state the result.

After reaching (10.19) we continue to z = 0 (€ D, ,) by use of (6.9), (6.11) and (6.12). We then
pass around —if by the method of §7, case 11, arriving at an arbitrary point b, , on the join of 0
and —ifin D, ,; see figure 16. Lastly, we pass around —a by the method of §7, case I, arriving
at (—o0, b, 4]. The final result is expressed by (10.13), with

A(u) = —2cos (2n) sec (3n) p(g+ 1) eXctot+inucos (20u) + O(u)}, (10.23)

and B(u) again undetermined.

AprPENDIX. COMPUTATION OF PRINCIPAL CURVES

The principal curves in figures 12, 13, 14, 15 and 16 were computed on the univac 1108
computer and plotted on the TEKTRONIX 4013 plotter at the University of Maryland, using the
following method.

Let ¢ again denote the transition point under consideration and m — 2 its multiplicity. Then

f(z) = (z=0)"2f(2), (A1)
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where f(z) is analytic and non-vanishing at ¢. Each principal curve emerging from ¢ has the
equation

Re f *i()de = o, (A 2)
These curves are computed in parametric form
2 = x(r) +iy(r), (A 3)

where 7 is the arc parameter measured from ¢, and x(7) and y(7) denote the real and imaginary
parts of z, respectively.
Differentiation yields

2 f FH) At = (z— o)l (2) (gf; + i%) . (A 4)

Let 0(r) denote the inclination of the curve (A 3) to the real axis, so that
dx/d7 = cos0, dy/dr =sin6. (A 5)
The condition that the real part of the right hand side of (A 4) be zero yields

0 = —%(m—2) arctan (;y:—-fi) —%arctan{}—{l:((x;:—ii-—yy))} + (mp+q+3)m, (A 6)

where ¢y, ¢r, fr(* +1y) and f; (x +iy) denote the real part of ¢, the imaginary part of ¢, the real part
of f(z) and the imaginary part of f(z), respectively. Also, p and ¢ are arbitrary integers, and it is
assumed that the inverse tangents occupy the same quadrants as the points (x —cg) +1(y — ¢;) and
Jr(x+1iy) +ifr(x +iy), respectively.

The principal curves are computed by numerical integration of the simultaneous nonlinear
differential equations represented by (A 5) and (A 6), using the initial conditions

%#(0) = cp, y(0) =¢r, 6(0) ={(25+1)n~phf(e)}/m,

where s is an integer that corresponds to the particular curve under consideration.

The integers p and ¢ in (A 6) are determined by continuity. Thus if 7,_; and 7, are successive
discrete values of 7, then |6(r,) —0(7,_,)| is required to lie within a prescribed tolerance. For
each of the examples treated in part C a suitable value for this tolerance was found to be }x.

No problems of stiffness arise in the integration of equations (A 5) and (A 6); in consequence
any appropriate initial-value method may be employed. The program actually used was based
on the codes DE, sTEP and INTRP described in ch. 10 of Shampine & Gordon (1975). Each of the
principal curves in examples 1, 2 and 3 of part G was computed for a total arc length of 12 units
(the arc lengths in the diagrams are somewhat less), the average computing time being just under
4 seconds.

Remark. In place of (A 6), we could employ the simpler formula

0 = —}arctan{f; (x +iy) [fr (x+1y)} + (¢ + )7, (A7)

where fg(¥+iy) and fi(x+iy) denote the real and imaginary parts of f(z), respectively. The
disadvantage of (A 7) compared with (A 6) is that fi(x +iy) and fi(x +1y) often underflow when
7 is small, owing to the presence of the factor (z—¢)™~2 on the right hand side of (A 1).
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writer is indebted to Dr C. Lozano for stimulating discussions and several references to physical
applications, and to Dr J. G. Taylor for permission to use some of his unpublished work. He also
wishes to acknowledge the assistance of Mr R. E. Kaylor with the computation and plotting of
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